人工智能在持续过程验证中的应用建议。

Mario Stassen, Catarina S Leitao, Toni Manzano, Francisco Valero, Benjamin Stevens, Matt Schmucki, David Hubmayr, Ferran Mirabent Rubinat, Sandrine Dessoy, Antonio R Moreira
{"title":"人工智能在持续过程验证中的应用建议。","authors":"Mario Stassen, Catarina S Leitao, Toni Manzano, Francisco Valero, Benjamin Stevens, Matt Schmucki, David Hubmayr, Ferran Mirabent Rubinat, Sandrine Dessoy, Antonio R Moreira","doi":"10.5731/pdajpst.2024.012950","DOIUrl":null,"url":null,"abstract":"<p><p>This review paper explores the transformative impact of Artificial Intelligence (AI) on Continued Process Verification (CPV) in the biopharmaceutical industry. Originating from the CPV of the Future project, the study investigates the challenges and opportunities associated with integrating AI into CPV, focusing on real-time data analysis and proactive process adjustments. The paper highlights the importance of aligning AI solutions with regulatory standards and offers a set of comprehensive recommendations to bridge the gap between AI's potential and its practical, compliant, and safe application in pharmaceutical manufacturing. Emphasizing transparency, interpretability, and risk management, the research contributes to establishing best practices for AI implementation, ensuring the highest quality pharmaceutical products while meeting regulatory expectations. The conclusions drawn provide valuable insights for navigating the evolving landscape of AI in pharmaceutical manufacturing.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommendations for Artificial Intelligence Application in Continued Process Verification.\",\"authors\":\"Mario Stassen, Catarina S Leitao, Toni Manzano, Francisco Valero, Benjamin Stevens, Matt Schmucki, David Hubmayr, Ferran Mirabent Rubinat, Sandrine Dessoy, Antonio R Moreira\",\"doi\":\"10.5731/pdajpst.2024.012950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review paper explores the transformative impact of Artificial Intelligence (AI) on Continued Process Verification (CPV) in the biopharmaceutical industry. Originating from the CPV of the Future project, the study investigates the challenges and opportunities associated with integrating AI into CPV, focusing on real-time data analysis and proactive process adjustments. The paper highlights the importance of aligning AI solutions with regulatory standards and offers a set of comprehensive recommendations to bridge the gap between AI's potential and its practical, compliant, and safe application in pharmaceutical manufacturing. Emphasizing transparency, interpretability, and risk management, the research contributes to establishing best practices for AI implementation, ensuring the highest quality pharmaceutical products while meeting regulatory expectations. The conclusions drawn provide valuable insights for navigating the evolving landscape of AI in pharmaceutical manufacturing.</p>\",\"PeriodicalId\":19986,\"journal\":{\"name\":\"PDA Journal of Pharmaceutical Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PDA Journal of Pharmaceutical Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5731/pdajpst.2024.012950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDA Journal of Pharmaceutical Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5731/pdajpst.2024.012950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了人工智能(AI)对生物制药行业持续过程验证(CPV)的变革性影响。该研究源于未来CPV项目,研究了将人工智能融入CPV的挑战和机遇,重点关注实时数据分析和主动流程调整。该文件强调了使人工智能解决方案与监管标准保持一致的重要性,并提供了一套全面的建议,以弥合人工智能的潜力与其在制药制造中的实际、合规和安全应用之间的差距。该研究强调透明度、可解释性和风险管理,有助于建立人工智能实施的最佳实践,确保最高质量的药品,同时满足监管期望。得出的结论为引导制药行业人工智能的发展前景提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recommendations for Artificial Intelligence Application in Continued Process Verification.

This review paper explores the transformative impact of Artificial Intelligence (AI) on Continued Process Verification (CPV) in the biopharmaceutical industry. Originating from the CPV of the Future project, the study investigates the challenges and opportunities associated with integrating AI into CPV, focusing on real-time data analysis and proactive process adjustments. The paper highlights the importance of aligning AI solutions with regulatory standards and offers a set of comprehensive recommendations to bridge the gap between AI's potential and its practical, compliant, and safe application in pharmaceutical manufacturing. Emphasizing transparency, interpretability, and risk management, the research contributes to establishing best practices for AI implementation, ensuring the highest quality pharmaceutical products while meeting regulatory expectations. The conclusions drawn provide valuable insights for navigating the evolving landscape of AI in pharmaceutical manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
34
期刊最新文献
A Risk Assessment and Risk Based Approach Review of Pre-use/Post Sterilization Integrity Testing (PUPSIT). Case Study: Visual Inspection of Topical Ophthalmic Formulations Packaged in Opaque and Semi-Transparent Containers: Working towards alignment with USP<790> Visible Inspection of Injections. Addressing Medical Device Extractables and Leachables via Non-Target Analysis (NTA); The Analytical Evaluation Threshold (AET) and Quantitation. Definition of particle visibility threshold in parenteral drug products - towards standardization of visual inspection operator qualification. Recommendations for Artificial Intelligence Application in Continued Process Verification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1