益生菌对骨代谢的不同调节作用与骨健康状况和输送途径。

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2024-12-28 DOI:10.1007/s12602-024-10441-x
Chaeyeon Park, Ok-Jin Park, Yeongkag Kwon, Jueun Lee, Cheol-Heui Yun, Seung Hyun Han
{"title":"益生菌对骨代谢的不同调节作用与骨健康状况和输送途径。","authors":"Chaeyeon Park, Ok-Jin Park, Yeongkag Kwon, Jueun Lee, Cheol-Heui Yun, Seung Hyun Han","doi":"10.1007/s12602-024-10441-x","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes. Intragastric administration of Lactiplantibacillus plantarum to ovariectomized mouse models for mimicking post-menopausal osteoporosis in humans substantially ameliorated osteoporosis by increasing bone and mineral density. In contrast, such effects did not occur in normal healthy mice under the same condition. Interestingly, however, intraperitoneal administration of L. plantarum induced bone destruction by increasing osteoclast differentiation and decreasing osteoblast differentiation. Furthermore, when L. plantarum was implanted into mouse calvarial bone, it potently augmented bone resorption. Concordantly, L. plantarum upregulated osteoclastogenesis and downregulated osteoblastogenesis in in vitro experiments. These results suggest that L. plantarum can have distinct roles in the regulation of bone metabolism depending on bone health and the delivery route.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Regulatory Effects of Probiotics on Bone Metabolism by the Status of Bone Health and Delivery Route.\",\"authors\":\"Chaeyeon Park, Ok-Jin Park, Yeongkag Kwon, Jueun Lee, Cheol-Heui Yun, Seung Hyun Han\",\"doi\":\"10.1007/s12602-024-10441-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes. Intragastric administration of Lactiplantibacillus plantarum to ovariectomized mouse models for mimicking post-menopausal osteoporosis in humans substantially ameliorated osteoporosis by increasing bone and mineral density. In contrast, such effects did not occur in normal healthy mice under the same condition. Interestingly, however, intraperitoneal administration of L. plantarum induced bone destruction by increasing osteoclast differentiation and decreasing osteoblast differentiation. Furthermore, when L. plantarum was implanted into mouse calvarial bone, it potently augmented bone resorption. Concordantly, L. plantarum upregulated osteoclastogenesis and downregulated osteoblastogenesis in in vitro experiments. These results suggest that L. plantarum can have distinct roles in the regulation of bone metabolism depending on bone health and the delivery route.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10441-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10441-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,益生菌对人体健康有良好的影响。然而,益生菌并不总是有益的,可能会引起意想不到的不良反应,如免疫功能低下患者的菌血症和/或炎症。在本研究中,我们研究了益生菌在不同健康状况和给药途径下对骨代谢的调节作用。为了模拟人类绝经后骨质疏松症,去卵巢小鼠模型经胃灌胃植物乳杆菌可通过增加骨密度和矿物质密度显著改善骨质疏松症。相比之下,在相同条件下,正常健康小鼠没有出现这种效果。然而,有趣的是,腹腔注射植物乳杆菌通过增加破骨细胞分化和减少成骨细胞分化来诱导骨破坏。此外,当植物乳杆菌植入小鼠颅骨时,它可以有效地增强骨吸收。与此相一致的是,在体外实验中,植物乳杆菌上调破骨细胞的发生,下调成骨细胞的发生。这些结果表明,植物乳杆菌在骨代谢的调节中可能有不同的作用,这取决于骨健康和输送途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential Regulatory Effects of Probiotics on Bone Metabolism by the Status of Bone Health and Delivery Route.

Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes. Intragastric administration of Lactiplantibacillus plantarum to ovariectomized mouse models for mimicking post-menopausal osteoporosis in humans substantially ameliorated osteoporosis by increasing bone and mineral density. In contrast, such effects did not occur in normal healthy mice under the same condition. Interestingly, however, intraperitoneal administration of L. plantarum induced bone destruction by increasing osteoclast differentiation and decreasing osteoblast differentiation. Furthermore, when L. plantarum was implanted into mouse calvarial bone, it potently augmented bone resorption. Concordantly, L. plantarum upregulated osteoclastogenesis and downregulated osteoblastogenesis in in vitro experiments. These results suggest that L. plantarum can have distinct roles in the regulation of bone metabolism depending on bone health and the delivery route.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
Synergistic Interactions Between Probiotics and Anticancer Drugs: Mechanisms, Benefits, and Challenges. Bibliometric Analysis of Probiotic Bacillus in Food Science: Evolution of Research Trends and Systematic Evaluation. New Frontiers in Fighting Mycobacterial Infections: Venom-Derived Peptides. Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria. Exploring the Potential Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Modulating the Vaginal Microbiome: a Bibliometric Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1