双酚A及其生殖毒性的潜在作用机制。

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2024-12-25 DOI:10.1016/j.tox.2024.154040
Megan E Cull, Louise M Winn
{"title":"双酚A及其生殖毒性的潜在作用机制。","authors":"Megan E Cull, Louise M Winn","doi":"10.1016/j.tox.2024.154040","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children. BPA is an endocrine-disrupting chemical, and through this function has been linked to reproductive toxicity. We review BPA's historical and current use, health and safety concerns and regulations, sources of exposure, and evidence for male and female reproductive toxicity. Evidence from epidemiological and animal studies idenfity that low- and high-exposure levels of BPA (prenatal, postnatal and adulthood exposure) can adversely affect male and female fertility and reproductive organs. While the cause of BPA-induced reproductive toxicity is not fully understood, we discuss BPA's estrogenic and androgenic activity, and its ability to disrupt the hypothalamic-pituitary-gonadal axis as a potential associated mechanism. There are significant differences in tolerable daily intakes of BPA set by global agencies, making interpretation of previous and emerging research findings challenging and inconsistent. Although BPA is deemed toxic by some government agencies, most do not currently consider it a health risk due to low populational exposure levels. However, we highlight evidence that even at acute, low exposure, BPA can adversely affect reproductive function. We recommend continuing research into the adverse effects of BPA on human health and revisiting the regulatory measures of BPA to limit exposure and promote public awareness of its potential to cause reproductive toxicity.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154040"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bisphenol A and its potential mechanism of action for reproductive toxicity.\",\"authors\":\"Megan E Cull, Louise M Winn\",\"doi\":\"10.1016/j.tox.2024.154040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children. BPA is an endocrine-disrupting chemical, and through this function has been linked to reproductive toxicity. We review BPA's historical and current use, health and safety concerns and regulations, sources of exposure, and evidence for male and female reproductive toxicity. Evidence from epidemiological and animal studies idenfity that low- and high-exposure levels of BPA (prenatal, postnatal and adulthood exposure) can adversely affect male and female fertility and reproductive organs. While the cause of BPA-induced reproductive toxicity is not fully understood, we discuss BPA's estrogenic and androgenic activity, and its ability to disrupt the hypothalamic-pituitary-gonadal axis as a potential associated mechanism. There are significant differences in tolerable daily intakes of BPA set by global agencies, making interpretation of previous and emerging research findings challenging and inconsistent. Although BPA is deemed toxic by some government agencies, most do not currently consider it a health risk due to low populational exposure levels. However, we highlight evidence that even at acute, low exposure, BPA can adversely affect reproductive function. We recommend continuing research into the adverse effects of BPA on human health and revisiting the regulatory measures of BPA to limit exposure and promote public awareness of its potential to cause reproductive toxicity.</p>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\" \",\"pages\":\"154040\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tox.2024.154040\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2024.154040","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

双酚A (BPA)是一种世界范围内使用的有机合成化学品。每年有数十亿磅的双酚a在工业生产过程中被用于商业产品,使人类无处不在地接触到双酚a。由于双酚a对健康的潜在不利影响,特别是对孕妇和儿童等弱势群体的潜在不利影响,已引起人们的关注。双酚a是一种干扰内分泌的化学物质,通过这种功能与生殖毒性有关。我们回顾了BPA的历史和目前的使用,健康和安全问题和法规,暴露来源,以及男性和女性生殖毒性的证据。来自流行病学和动物研究的证据表明,低水平和高水平的双酚a暴露(产前、产后和成年暴露)会对男性和女性的生育能力和生殖器官产生不利影响。虽然BPA引起生殖毒性的原因尚不完全清楚,但我们讨论了BPA的雌激素和雄激素活性,以及它破坏下丘脑-垂体-性腺轴的能力,这是一种潜在的相关机制。全球机构设定的双酚a每日可耐受摄入量存在显著差异,这使得对以往和新出现的研究结果的解释具有挑战性和不一致性。尽管一些政府机构认为双酚a有毒,但由于人群接触水平低,大多数人目前并不认为它会对健康构成威胁。然而,我们强调证据表明,即使在急性,低暴露,双酚a也会对生殖功能产生不利影响。我们建议继续研究双酚a对人类健康的不利影响,并重新审视双酚a的监管措施,以限制暴露并提高公众对其可能导致生殖毒性的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bisphenol A and its potential mechanism of action for reproductive toxicity.

Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children. BPA is an endocrine-disrupting chemical, and through this function has been linked to reproductive toxicity. We review BPA's historical and current use, health and safety concerns and regulations, sources of exposure, and evidence for male and female reproductive toxicity. Evidence from epidemiological and animal studies idenfity that low- and high-exposure levels of BPA (prenatal, postnatal and adulthood exposure) can adversely affect male and female fertility and reproductive organs. While the cause of BPA-induced reproductive toxicity is not fully understood, we discuss BPA's estrogenic and androgenic activity, and its ability to disrupt the hypothalamic-pituitary-gonadal axis as a potential associated mechanism. There are significant differences in tolerable daily intakes of BPA set by global agencies, making interpretation of previous and emerging research findings challenging and inconsistent. Although BPA is deemed toxic by some government agencies, most do not currently consider it a health risk due to low populational exposure levels. However, we highlight evidence that even at acute, low exposure, BPA can adversely affect reproductive function. We recommend continuing research into the adverse effects of BPA on human health and revisiting the regulatory measures of BPA to limit exposure and promote public awareness of its potential to cause reproductive toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Chronic environmental exposure to polystyrene microplastics increases the risk of nonalcoholic fatty liver disease. Assessing the impact of TiO2 nanomaterials on intestinal cells: new evidence for epithelial translocation and potential pro-inflammatory effects. InterDIA: Interpretable Prediction of Drug-induced Autoimmunity through Ensemble Machine Learning Approaches. A preliminary study of combined toxicity and underlying mechanisms of imidacloprid and cadmium coexposure using a multiomics integration approach. Benzene-induced hematotoxicity enhances the self-renewal ability of HSPCs in Mll-Af9 mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1