Joseph John Bevelacqua, Abdolkarim Ghadimi-Moghadam, Seyed Alireza Mortazavi, Abdollah Jafarzadeh, Masoud Haghani, Azim Kaveh-Ahangar, Ali Ghadimi-Moghadam
{"title":"时间揭示真相!哪些治疗COVID-19的方法很快就被放弃了,哪些与普遍看法相反的方法仍然盛行?","authors":"Joseph John Bevelacqua, Abdolkarim Ghadimi-Moghadam, Seyed Alireza Mortazavi, Abdollah Jafarzadeh, Masoud Haghani, Azim Kaveh-Ahangar, Ali Ghadimi-Moghadam","doi":"10.31661/jbpe.v0i0.2206-1514","DOIUrl":null,"url":null,"abstract":"<p><p>During the early days of the COVID-19 pandemic, low dose radiation therapy (LDRT) was proposed as a potentially effective treatment method. To minimize potential toxicity, the initial treatment approach involved a few mGy of adapting radiation followed by a single 250 mGy whole lung challenging dose. However, antiviral drugs were also introduced as a promising treatment option, which were thought to have the potential to revolutionize the management of the crisis. Despite early warnings, many physicians did not fully consider the key point that, in contrast with LDRT, antiviral drug treatments can result in strong selective pressure on the virus. This can lead to the emergence of new SARS-CoV-2 variants, a phenomenon that can have serious global consequences. After more than two years, the truth has been revealed the WHO Guideline Development Group has advised against the use of remdesivir, a widely used antiviral medication, for COVID-19. Meanwhile, a growing body of evidence suggests that LDRT can be a promising, low-risk approach for avoiding or delaying invasive respiratory support in COVID-19 patients. Although there is substantial supporting documentation, more high-quality, controlled, and randomized double-blind clinical trials are needed to further investigate the efficacy and potential therapeutic mechanisms of LDRT for COVID-19.</p>","PeriodicalId":38035,"journal":{"name":"Journal of Biomedical Physics and Engineering","volume":"14 6","pages":"599-606"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668932/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time Reveals the Truth! What Treatments for COVID-19 Were Quickly Abandoned, and Which Methods, Contrary to Popular Belief, Are Still Flourishing?\",\"authors\":\"Joseph John Bevelacqua, Abdolkarim Ghadimi-Moghadam, Seyed Alireza Mortazavi, Abdollah Jafarzadeh, Masoud Haghani, Azim Kaveh-Ahangar, Ali Ghadimi-Moghadam\",\"doi\":\"10.31661/jbpe.v0i0.2206-1514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the early days of the COVID-19 pandemic, low dose radiation therapy (LDRT) was proposed as a potentially effective treatment method. To minimize potential toxicity, the initial treatment approach involved a few mGy of adapting radiation followed by a single 250 mGy whole lung challenging dose. However, antiviral drugs were also introduced as a promising treatment option, which were thought to have the potential to revolutionize the management of the crisis. Despite early warnings, many physicians did not fully consider the key point that, in contrast with LDRT, antiviral drug treatments can result in strong selective pressure on the virus. This can lead to the emergence of new SARS-CoV-2 variants, a phenomenon that can have serious global consequences. After more than two years, the truth has been revealed the WHO Guideline Development Group has advised against the use of remdesivir, a widely used antiviral medication, for COVID-19. Meanwhile, a growing body of evidence suggests that LDRT can be a promising, low-risk approach for avoiding or delaying invasive respiratory support in COVID-19 patients. Although there is substantial supporting documentation, more high-quality, controlled, and randomized double-blind clinical trials are needed to further investigate the efficacy and potential therapeutic mechanisms of LDRT for COVID-19.</p>\",\"PeriodicalId\":38035,\"journal\":{\"name\":\"Journal of Biomedical Physics and Engineering\",\"volume\":\"14 6\",\"pages\":\"599-606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31661/jbpe.v0i0.2206-1514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31661/jbpe.v0i0.2206-1514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Time Reveals the Truth! What Treatments for COVID-19 Were Quickly Abandoned, and Which Methods, Contrary to Popular Belief, Are Still Flourishing?
During the early days of the COVID-19 pandemic, low dose radiation therapy (LDRT) was proposed as a potentially effective treatment method. To minimize potential toxicity, the initial treatment approach involved a few mGy of adapting radiation followed by a single 250 mGy whole lung challenging dose. However, antiviral drugs were also introduced as a promising treatment option, which were thought to have the potential to revolutionize the management of the crisis. Despite early warnings, many physicians did not fully consider the key point that, in contrast with LDRT, antiviral drug treatments can result in strong selective pressure on the virus. This can lead to the emergence of new SARS-CoV-2 variants, a phenomenon that can have serious global consequences. After more than two years, the truth has been revealed the WHO Guideline Development Group has advised against the use of remdesivir, a widely used antiviral medication, for COVID-19. Meanwhile, a growing body of evidence suggests that LDRT can be a promising, low-risk approach for avoiding or delaying invasive respiratory support in COVID-19 patients. Although there is substantial supporting documentation, more high-quality, controlled, and randomized double-blind clinical trials are needed to further investigate the efficacy and potential therapeutic mechanisms of LDRT for COVID-19.
期刊介绍:
The Journal of Biomedical Physics and Engineering (JBPE) is a bimonthly peer-reviewed English-language journal that publishes high-quality basic sciences and clinical research (experimental or theoretical) broadly concerned with the relationship of physics to medicine and engineering.