转录因子TCF4:结构、功能与相关疾病

IF 0.9 Q3 AGRICULTURE, MULTIDISCIPLINARY Vavilovskii Zhurnal Genetiki i Selektsii Pub Date : 2024-11-01 DOI:10.18699/vjgb-24-85
R R Savchenko, N A Skryabin
{"title":"转录因子TCF4:结构、功能与相关疾病","authors":"R R Savchenko, N A Skryabin","doi":"10.18699/vjgb-24-85","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of human genes - particularly their structure, functions, and regulatory mechanisms - is still limited. The biological role of approximately 20 % of human proteins has not been established yet, and the molecular functions of the known part of the proteome remain poorly understood. This hinders progress in basic and applied biological and medical sciences, especially in treating hereditary diseases, which are caused by mutations and polymorphic variants in individual genes. Therefore, it is crucial to comprehend the mechanisms of protein functioning to address this problem. This further emphasizes the importance of investigating gene functions and molecular pathogenetic pathways associated with single-gene inherited diseases. This review focuses on the TCF4 gene that encodes a transcription factor crucial for nervous system development and functioning. Pathogenic variants in this gene have been linked to a rare genetic disorder, Pitt-Hopkins syndrome, and TCF4 polymorphic variants are associated with several socially significant diseases, including various psychiatric disorders. The pathogenetic mechanisms of these conditions remain unexplored, and the knowledge about TCF4 upregulation and its target genes is limited. TCF4 can be expressed in various isoforms due to the complex structure and regulation of its gene, which complicates the investigation of the protein's functions. Here, we consider the structure and functions of the TCF4 transcription factor. We discuss its potential target genes and the possible loss-of-function pathogenetic mechanisms identified in animal and cellular models of Pitt-Hopkins syndrome. The review also examines the advantages and limitations of potential therapies for Pitt-Hopkins syndrome that are based on TCF4 dosage compensation or altering the activity of TCF4 target genes.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":"28 7","pages":"770-779"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcription factor TCF4: structure, function, and associated diseases.\",\"authors\":\"R R Savchenko, N A Skryabin\",\"doi\":\"10.18699/vjgb-24-85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our understanding of human genes - particularly their structure, functions, and regulatory mechanisms - is still limited. The biological role of approximately 20 % of human proteins has not been established yet, and the molecular functions of the known part of the proteome remain poorly understood. This hinders progress in basic and applied biological and medical sciences, especially in treating hereditary diseases, which are caused by mutations and polymorphic variants in individual genes. Therefore, it is crucial to comprehend the mechanisms of protein functioning to address this problem. This further emphasizes the importance of investigating gene functions and molecular pathogenetic pathways associated with single-gene inherited diseases. This review focuses on the TCF4 gene that encodes a transcription factor crucial for nervous system development and functioning. Pathogenic variants in this gene have been linked to a rare genetic disorder, Pitt-Hopkins syndrome, and TCF4 polymorphic variants are associated with several socially significant diseases, including various psychiatric disorders. The pathogenetic mechanisms of these conditions remain unexplored, and the knowledge about TCF4 upregulation and its target genes is limited. TCF4 can be expressed in various isoforms due to the complex structure and regulation of its gene, which complicates the investigation of the protein's functions. Here, we consider the structure and functions of the TCF4 transcription factor. We discuss its potential target genes and the possible loss-of-function pathogenetic mechanisms identified in animal and cellular models of Pitt-Hopkins syndrome. The review also examines the advantages and limitations of potential therapies for Pitt-Hopkins syndrome that are based on TCF4 dosage compensation or altering the activity of TCF4 target genes.</p>\",\"PeriodicalId\":44339,\"journal\":{\"name\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"volume\":\"28 7\",\"pages\":\"770-779\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18699/vjgb-24-85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/vjgb-24-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们对人类基因的理解——尤其是它们的结构、功能和调控机制——仍然有限。大约20%的人类蛋白质的生物学作用尚未确定,蛋白质组中已知部分的分子功能仍然知之甚少。这阻碍了基础和应用生物和医学科学的进展,特别是在治疗遗传疾病方面的进展,这些疾病是由单个基因的突变和多态变异引起的。因此,了解蛋白质的功能机制是解决这一问题的关键。这进一步强调了研究与单基因遗传性疾病相关的基因功能和分子发病途径的重要性。本文综述了TCF4基因,该基因编码对神经系统发育和功能至关重要的转录因子。该基因的致病性变异与一种罕见的遗传疾病皮特-霍普金斯综合征有关,TCF4多态性变异与几种具有社会意义的疾病有关,包括各种精神疾病。这些疾病的发病机制尚不清楚,对TCF4上调及其靶基因的了解有限。由于TCF4基因的复杂结构和调控,它可以以多种异构体表达,这使得对其功能的研究变得复杂。在这里,我们考虑TCF4转录因子的结构和功能。我们讨论了其潜在的靶基因和可能的功能丧失的致病机制确定的动物和细胞模型的皮特-霍普金斯综合征。本综述还探讨了基于TCF4剂量补偿或改变TCF4靶基因活性的皮特-霍普金斯综合征潜在治疗方法的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transcription factor TCF4: structure, function, and associated diseases.

Our understanding of human genes - particularly their structure, functions, and regulatory mechanisms - is still limited. The biological role of approximately 20 % of human proteins has not been established yet, and the molecular functions of the known part of the proteome remain poorly understood. This hinders progress in basic and applied biological and medical sciences, especially in treating hereditary diseases, which are caused by mutations and polymorphic variants in individual genes. Therefore, it is crucial to comprehend the mechanisms of protein functioning to address this problem. This further emphasizes the importance of investigating gene functions and molecular pathogenetic pathways associated with single-gene inherited diseases. This review focuses on the TCF4 gene that encodes a transcription factor crucial for nervous system development and functioning. Pathogenic variants in this gene have been linked to a rare genetic disorder, Pitt-Hopkins syndrome, and TCF4 polymorphic variants are associated with several socially significant diseases, including various psychiatric disorders. The pathogenetic mechanisms of these conditions remain unexplored, and the knowledge about TCF4 upregulation and its target genes is limited. TCF4 can be expressed in various isoforms due to the complex structure and regulation of its gene, which complicates the investigation of the protein's functions. Here, we consider the structure and functions of the TCF4 transcription factor. We discuss its potential target genes and the possible loss-of-function pathogenetic mechanisms identified in animal and cellular models of Pitt-Hopkins syndrome. The review also examines the advantages and limitations of potential therapies for Pitt-Hopkins syndrome that are based on TCF4 dosage compensation or altering the activity of TCF4 target genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vavilovskii Zhurnal Genetiki i Selektsii
Vavilovskii Zhurnal Genetiki i Selektsii AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
119
审稿时长
8 weeks
期刊介绍: The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.
期刊最新文献
Comparative analysis of the primary structure and production of recombinant poly(ADP-ribose)polymerase 1 of long-lived Heterocephalus glaber. Cytogenetic features of intergeneric amphydiploids and genome-substituted forms of wheat. Detailed cytogenetic analysis of three duck species (the northern pintail, mallard, and common goldeneye) and karyotype evolution in the family Anatidae (Anseriformes, Aves). Generation and characterization of two induced pluripotent stem cell lines (ICGi052-A and ICGi052-B) from a patient with frontotemporal dementia with parkinsonism-17 associated with the pathological variant c.2013T>G in the MAPT gene. Molecular genetic and morphological characteristics of Micractinium thermotolerans and M. inermum (Trebouxiophyceae, Chlorophyta) from pyroclastic deposits of the Kamchatka Peninsula (Russia).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1