{"title":"Gallophilous蚜虫周期性孤雌生殖理论(同翅目,蚜虫科)。","authors":"Ilya A Gavrilov-Zimin","doi":"10.3897/compcytogen.18.136095","DOIUrl":null,"url":null,"abstract":"<p><p>The paper elaborates theoretical basis of the origin of aphid cyclical parthenogenesis in view of the original life of these insects in strobiloid galls on <i>Picea</i> spp. The period of gall opening is greatly extended in time, which prevents normal panmixia and creates a selective advantage for parthenogenetic reproduction. Migration of aphids to secondary host plants, on which closed galls never form, parthenogenetic reproduction on these plants, and the subsequent simultaneous return of \"remigrants\" to the main host plant make it possible to synchronize the development of the bisexual generation and achieve mass panmixia at the end of the life cycle only; it coincides with the end of summer growth shoots or the autumn end of the vegetation period as a whole. The evolutionary transition of aphids from conifers to angiosperms in the Cretaceous period in parallel meant the possibility of development in more spacious galls accommodating several consecutive parthenogenetic generations, the transition to viviparity and telescopic embryonization, significantly accelerating the propagation.</p>","PeriodicalId":50656,"journal":{"name":"Comparative Cytogenetics","volume":"18 ","pages":"247-276"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gallophilous theory of cyclical parthenogenesis in aphids (Homoptera, Aphidinea).\",\"authors\":\"Ilya A Gavrilov-Zimin\",\"doi\":\"10.3897/compcytogen.18.136095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper elaborates theoretical basis of the origin of aphid cyclical parthenogenesis in view of the original life of these insects in strobiloid galls on <i>Picea</i> spp. The period of gall opening is greatly extended in time, which prevents normal panmixia and creates a selective advantage for parthenogenetic reproduction. Migration of aphids to secondary host plants, on which closed galls never form, parthenogenetic reproduction on these plants, and the subsequent simultaneous return of \\\"remigrants\\\" to the main host plant make it possible to synchronize the development of the bisexual generation and achieve mass panmixia at the end of the life cycle only; it coincides with the end of summer growth shoots or the autumn end of the vegetation period as a whole. The evolutionary transition of aphids from conifers to angiosperms in the Cretaceous period in parallel meant the possibility of development in more spacious galls accommodating several consecutive parthenogenetic generations, the transition to viviparity and telescopic embryonization, significantly accelerating the propagation.</p>\",\"PeriodicalId\":50656,\"journal\":{\"name\":\"Comparative Cytogenetics\",\"volume\":\"18 \",\"pages\":\"247-276\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3897/compcytogen.18.136095\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/compcytogen.18.136095","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Gallophilous theory of cyclical parthenogenesis in aphids (Homoptera, Aphidinea).
The paper elaborates theoretical basis of the origin of aphid cyclical parthenogenesis in view of the original life of these insects in strobiloid galls on Picea spp. The period of gall opening is greatly extended in time, which prevents normal panmixia and creates a selective advantage for parthenogenetic reproduction. Migration of aphids to secondary host plants, on which closed galls never form, parthenogenetic reproduction on these plants, and the subsequent simultaneous return of "remigrants" to the main host plant make it possible to synchronize the development of the bisexual generation and achieve mass panmixia at the end of the life cycle only; it coincides with the end of summer growth shoots or the autumn end of the vegetation period as a whole. The evolutionary transition of aphids from conifers to angiosperms in the Cretaceous period in parallel meant the possibility of development in more spacious galls accommodating several consecutive parthenogenetic generations, the transition to viviparity and telescopic embryonization, significantly accelerating the propagation.
期刊介绍:
Comparative Cytogenetics is a peer-reviewed, open-access, rapid online journal launched to accelerate research on all aspects of plant and animal cytogenetics, karyosystematics, and molecular systematics.
All published papers can be freely copied, downloaded, printed and distributed at no charge for the reader. Authors are thus encouraged to post the pdf files of published papers on their homepages or elsewhere to expedite distribution. There is no charge for color.