基于多任务学习方法的手部x线片桡骨和尺骨远端骨骼成熟度自动分级。

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Tomography Pub Date : 2024-11-28 DOI:10.3390/tomography10120139
Xiaowei Liu, Rulan Wang, Wenting Jiang, Zhaohua Lu, Ningning Chen, Hongfei Wang
{"title":"基于多任务学习方法的手部x线片桡骨和尺骨远端骨骼成熟度自动分级。","authors":"Xiaowei Liu, Rulan Wang, Wenting Jiang, Zhaohua Lu, Ningning Chen, Hongfei Wang","doi":"10.3390/tomography10120139","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Assessment of skeletal maturity is a common clinical practice to investigate adolescent growth and endocrine disorders. The distal radius and ulna (DRU) maturity classification is a practical and easy-to-use scheme that was designed for adolescent idiopathic scoliosis clinical management and presents high sensitivity in predicting the growth peak and cessation among adolescents. However, time-consuming and error-prone manual assessment limits DRU in clinical application. <b>Methods</b>: In this study, we propose a multi-task learning framework with an attention mechanism for the joint segmentation and classification of the distal radius and ulna in hand X-ray images. The proposed framework consists of two sub-networks: an encoder-decoder structure with attention gates for segmentation and a slight convolutional network for classification. <b>Results:</b> With a transfer learning strategy, the proposed framework improved DRU segmentation and classification over the single task learning counterparts and previously reported methods, achieving an accuracy of 94.3% and 90.8% for radius and ulna maturity grading. <b>Findings:</b> Our automatic DRU assessment platform covers the whole process of growth acceleration and cessation during puberty. Upon incorporation into advanced scoliosis progression prognostic tools, clinical decision making will be potentially improved in the conservative and operative management of scoliosis patients.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 12","pages":"1915-1929"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Distal Radius and Ulna Skeletal Maturity Grading from Hand Radiographs with an Attention Multi-Task Learning Method.\",\"authors\":\"Xiaowei Liu, Rulan Wang, Wenting Jiang, Zhaohua Lu, Ningning Chen, Hongfei Wang\",\"doi\":\"10.3390/tomography10120139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Assessment of skeletal maturity is a common clinical practice to investigate adolescent growth and endocrine disorders. The distal radius and ulna (DRU) maturity classification is a practical and easy-to-use scheme that was designed for adolescent idiopathic scoliosis clinical management and presents high sensitivity in predicting the growth peak and cessation among adolescents. However, time-consuming and error-prone manual assessment limits DRU in clinical application. <b>Methods</b>: In this study, we propose a multi-task learning framework with an attention mechanism for the joint segmentation and classification of the distal radius and ulna in hand X-ray images. The proposed framework consists of two sub-networks: an encoder-decoder structure with attention gates for segmentation and a slight convolutional network for classification. <b>Results:</b> With a transfer learning strategy, the proposed framework improved DRU segmentation and classification over the single task learning counterparts and previously reported methods, achieving an accuracy of 94.3% and 90.8% for radius and ulna maturity grading. <b>Findings:</b> Our automatic DRU assessment platform covers the whole process of growth acceleration and cessation during puberty. Upon incorporation into advanced scoliosis progression prognostic tools, clinical decision making will be potentially improved in the conservative and operative management of scoliosis patients.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"10 12\",\"pages\":\"1915-1929\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10120139\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10120139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:骨骼成熟度评估是研究青少年生长和内分泌紊乱的常见临床实践。桡骨远端尺骨(DRU)成熟度分级是一种实用且易于使用的方案,用于青少年特发性脊柱侧凸的临床管理,在预测青少年的生长高峰和停止方面具有很高的敏感性。然而,耗时且容易出错的人工评估限制了DRU在临床中的应用。方法:在本研究中,我们提出了一个带有注意机制的多任务学习框架,用于手部x线图像中桡骨和尺骨远端关节的分割和分类。该框架由两个子网络组成:一个带有注意门的编码器-解码器结构用于分割,一个用于分类的小卷积网络。结果:采用迁移学习策略,所提出的框架比单任务学习方法和先前报道的方法改进了DRU分割和分类,对桡骨和尺骨成熟度分级的准确率分别为94.3%和90.8%。研究发现:我们的DRU自动评估平台涵盖了青春期生长加速和停止的全过程。在纳入晚期脊柱侧凸进展预后工具后,临床决策将潜在地改善脊柱侧凸患者的保守和手术治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Distal Radius and Ulna Skeletal Maturity Grading from Hand Radiographs with an Attention Multi-Task Learning Method.

Background: Assessment of skeletal maturity is a common clinical practice to investigate adolescent growth and endocrine disorders. The distal radius and ulna (DRU) maturity classification is a practical and easy-to-use scheme that was designed for adolescent idiopathic scoliosis clinical management and presents high sensitivity in predicting the growth peak and cessation among adolescents. However, time-consuming and error-prone manual assessment limits DRU in clinical application. Methods: In this study, we propose a multi-task learning framework with an attention mechanism for the joint segmentation and classification of the distal radius and ulna in hand X-ray images. The proposed framework consists of two sub-networks: an encoder-decoder structure with attention gates for segmentation and a slight convolutional network for classification. Results: With a transfer learning strategy, the proposed framework improved DRU segmentation and classification over the single task learning counterparts and previously reported methods, achieving an accuracy of 94.3% and 90.8% for radius and ulna maturity grading. Findings: Our automatic DRU assessment platform covers the whole process of growth acceleration and cessation during puberty. Upon incorporation into advanced scoliosis progression prognostic tools, clinical decision making will be potentially improved in the conservative and operative management of scoliosis patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
期刊最新文献
Enhanced Detection of Residual Breast Cancer Post-Excisional Biopsy: Comparative Analysis of Contrast-Enhanced MRI with and Without Diffusion-Weighted Imaging. Comparative Sensitivity of MRI Indices for Myelin Assessment in Spinal Cord Regions. CT Angiography Assessment of Dorsal Pancreatic Artery and Intrapancreatic Arcade Anatomy: Impact on Whipple Surgery Outcomes. Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain. Unraveling the Invisible: Topological Data Analysis as the New Frontier in Radiology's Diagnostic Arsenal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1