{"title":"烟草使用障碍的神经解剖学亚型及其与临床和分子特征的关系。","authors":"Mengzhe Zhang, Xiaoyu Niu, Jinghan Dang, Jieping Sun, Qiuying Tao, Weijian Wang, Shaoqiang Han, Jingliang Cheng, Yong Zhang","doi":"10.1016/j.pnpbp.2024.111235","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Individual neurobiological heterogeneity among patients with tobacco use disorder (TUD) hampers the identification of neuroimaging phenotypes.</div></div><div><h3>Methods</h3><div>The current study recruited 122 TUD individuals and 57 healthy controls, and obtained their 3D-T1 images. Heterogeneity through discriminative analysis (HYDRA) was applied to uncover the potential subtype of TUD where regional gray matter volume (GMV) was treated as the feature. Then we examined the clinical, neuroimaging and molecular characteristics of subtypes.</div></div><div><h3>Results</h3><div>Two distinct neuroanatomical subtypes were found. In subtype 1, TUD individuals showed decreased GMV in right orbitofrontal cortex (OFC), while subtype 2 exhibited distributed pattern of widely GMV increase. Moreover, subtype 1 showed older initial smoking age, longer duration of smoking than Subtype 2. Persistent smoking behavior in subtype 1 is more likely caused by substance dependence/addiction rather than psychosocial factors. GMV correlated negatively with cumulative tobacco exposure in Subtype 1 but not in Subtype 2. Besides, neuroanatomical aberrance in subtype 1 was mainly associated with dopamine system, while neuroanatomical abnormalities in subtype 2 were primarily associated with GABAa.</div></div><div><h3>Conclusions</h3><div>Overall, our results revealed two opposite neuroanatomical subtypes of TUD, which largely overlapped with their clinical and molecular features respectively. TUD subtypes taxonomy based on objective anatomy could help to facilitate the development of individualized treatment for TUD.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"136 ","pages":"Article 111235"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroanatomical subtypes of tobacco use disorder and relationship with clinical and molecular features\",\"authors\":\"Mengzhe Zhang, Xiaoyu Niu, Jinghan Dang, Jieping Sun, Qiuying Tao, Weijian Wang, Shaoqiang Han, Jingliang Cheng, Yong Zhang\",\"doi\":\"10.1016/j.pnpbp.2024.111235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Individual neurobiological heterogeneity among patients with tobacco use disorder (TUD) hampers the identification of neuroimaging phenotypes.</div></div><div><h3>Methods</h3><div>The current study recruited 122 TUD individuals and 57 healthy controls, and obtained their 3D-T1 images. Heterogeneity through discriminative analysis (HYDRA) was applied to uncover the potential subtype of TUD where regional gray matter volume (GMV) was treated as the feature. Then we examined the clinical, neuroimaging and molecular characteristics of subtypes.</div></div><div><h3>Results</h3><div>Two distinct neuroanatomical subtypes were found. In subtype 1, TUD individuals showed decreased GMV in right orbitofrontal cortex (OFC), while subtype 2 exhibited distributed pattern of widely GMV increase. Moreover, subtype 1 showed older initial smoking age, longer duration of smoking than Subtype 2. Persistent smoking behavior in subtype 1 is more likely caused by substance dependence/addiction rather than psychosocial factors. GMV correlated negatively with cumulative tobacco exposure in Subtype 1 but not in Subtype 2. Besides, neuroanatomical aberrance in subtype 1 was mainly associated with dopamine system, while neuroanatomical abnormalities in subtype 2 were primarily associated with GABAa.</div></div><div><h3>Conclusions</h3><div>Overall, our results revealed two opposite neuroanatomical subtypes of TUD, which largely overlapped with their clinical and molecular features respectively. TUD subtypes taxonomy based on objective anatomy could help to facilitate the development of individualized treatment for TUD.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"136 \",\"pages\":\"Article 111235\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584624003038\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624003038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Neuroanatomical subtypes of tobacco use disorder and relationship with clinical and molecular features
Background
Individual neurobiological heterogeneity among patients with tobacco use disorder (TUD) hampers the identification of neuroimaging phenotypes.
Methods
The current study recruited 122 TUD individuals and 57 healthy controls, and obtained their 3D-T1 images. Heterogeneity through discriminative analysis (HYDRA) was applied to uncover the potential subtype of TUD where regional gray matter volume (GMV) was treated as the feature. Then we examined the clinical, neuroimaging and molecular characteristics of subtypes.
Results
Two distinct neuroanatomical subtypes were found. In subtype 1, TUD individuals showed decreased GMV in right orbitofrontal cortex (OFC), while subtype 2 exhibited distributed pattern of widely GMV increase. Moreover, subtype 1 showed older initial smoking age, longer duration of smoking than Subtype 2. Persistent smoking behavior in subtype 1 is more likely caused by substance dependence/addiction rather than psychosocial factors. GMV correlated negatively with cumulative tobacco exposure in Subtype 1 but not in Subtype 2. Besides, neuroanatomical aberrance in subtype 1 was mainly associated with dopamine system, while neuroanatomical abnormalities in subtype 2 were primarily associated with GABAa.
Conclusions
Overall, our results revealed two opposite neuroanatomical subtypes of TUD, which largely overlapped with their clinical and molecular features respectively. TUD subtypes taxonomy based on objective anatomy could help to facilitate the development of individualized treatment for TUD.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.