机器学习在COVID-19结局预测中的局部和聚合数据训练策略的多中心比较分析

PLOS digital health Pub Date : 2024-12-26 eCollection Date: 2024-12-01 DOI:10.1371/journal.pdig.0000699
Carine Savalli, Roberta Moreira Wichmann, Fabiano Barcellos Filho, Fernando Timoteo Fernandes, Alexandre Dias Porto Chiavegatto Filho
{"title":"机器学习在COVID-19结局预测中的局部和聚合数据训练策略的多中心比较分析","authors":"Carine Savalli, Roberta Moreira Wichmann, Fabiano Barcellos Filho, Fernando Timoteo Fernandes, Alexandre Dias Porto Chiavegatto Filho","doi":"10.1371/journal.pdig.0000699","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) is a promising tool in assisting clinical decision-making for improving diagnosis and prognosis, especially in developing regions. It is often used with large samples, aggregating data from different regions and hospitals. However, it is unclear how this affects predictions in local centers. This study aims to compare data aggregation strategies of several hospitals in Brazil with a local training strategy in each hospital to predict two COVID-19 outcomes: Intensive Care Unit admission (ICU) and mechanical ventilation use (MV). The study included 6,046 patients from 14 hospitals, with local sample sizes ranging from 47 to 1500 patients. Machine learning models were trained using extreme gradient boosting, lightGBM, and catboost for structured data. Seven data aggregation strategies based on hospital geographic regions were compared with local training, and the best strategy was determined by analyzing the area under the ROC curve (AUROC). SHAP (Shapley Additive exPlanations) values were used to assess the contribution of variables to predictions. Additionally, a metafeatures analysis examined how hospital characteristics influence the selection of the best strategy. The study found that the local training strategy was the most effective approach, in the case of ICU outcomes, for 11 of the 14 hospitals (79%), and, in the case of MV, for 10 hospitals (71%). Metafeatures analysis suggested that hospitals with smaller sample sizes generally performed better using an aggregated data strategy compared to local training. Our study brings to light an important concern about the impact of grouping data from different hospitals in predictive machine learning models. These findings contribute to the ongoing debate about the trade-off between increasing sample size and bringing together heterogeneous scenarios.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 12","pages":"e0000699"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670925/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multicenter comparative analysis of local and aggregated data training strategies in COVID-19 outcome prediction with Machine learning.\",\"authors\":\"Carine Savalli, Roberta Moreira Wichmann, Fabiano Barcellos Filho, Fernando Timoteo Fernandes, Alexandre Dias Porto Chiavegatto Filho\",\"doi\":\"10.1371/journal.pdig.0000699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) is a promising tool in assisting clinical decision-making for improving diagnosis and prognosis, especially in developing regions. It is often used with large samples, aggregating data from different regions and hospitals. However, it is unclear how this affects predictions in local centers. This study aims to compare data aggregation strategies of several hospitals in Brazil with a local training strategy in each hospital to predict two COVID-19 outcomes: Intensive Care Unit admission (ICU) and mechanical ventilation use (MV). The study included 6,046 patients from 14 hospitals, with local sample sizes ranging from 47 to 1500 patients. Machine learning models were trained using extreme gradient boosting, lightGBM, and catboost for structured data. Seven data aggregation strategies based on hospital geographic regions were compared with local training, and the best strategy was determined by analyzing the area under the ROC curve (AUROC). SHAP (Shapley Additive exPlanations) values were used to assess the contribution of variables to predictions. Additionally, a metafeatures analysis examined how hospital characteristics influence the selection of the best strategy. The study found that the local training strategy was the most effective approach, in the case of ICU outcomes, for 11 of the 14 hospitals (79%), and, in the case of MV, for 10 hospitals (71%). Metafeatures analysis suggested that hospitals with smaller sample sizes generally performed better using an aggregated data strategy compared to local training. Our study brings to light an important concern about the impact of grouping data from different hospitals in predictive machine learning models. These findings contribute to the ongoing debate about the trade-off between increasing sample size and bringing together heterogeneous scenarios.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"3 12\",\"pages\":\"e0000699\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)在帮助临床决策以改善诊断和预后方面是一个很有前途的工具,特别是在发展中地区。它通常用于大样本,汇总来自不同地区和医院的数据。然而,目前尚不清楚这将如何影响当地中心的预测。本研究旨在将巴西几家医院的数据汇总策略与每家医院的当地培训策略进行比较,以预测两种COVID-19结果:重症监护病房入住(ICU)和机械通气使用(MV)。该研究包括来自14家医院的6046名患者,当地样本量从47名到1500名不等。机器学习模型使用极端梯度增强、lightGBM和catboost对结构化数据进行训练。将7种基于医院地理区域的数据聚合策略与局部训练进行比较,并通过分析ROC曲线下面积(AUROC)确定最佳策略。SHAP (Shapley Additive explanatory)值用于评估变量对预测的贡献。此外,一项元特征分析检验了医院特征如何影响最佳策略的选择。研究发现,在ICU结果方面,14家医院中的11家(79%)采用本地培训策略是最有效的方法,而在MV方面,10家医院(71%)采用本地培训策略。元特征分析表明,与本地培训相比,样本量较小的医院通常在使用汇总数据策略时表现更好。我们的研究揭示了一个重要的问题,即来自不同医院的数据分组在预测机器学习模型中的影响。这些发现有助于在增加样本量和汇集异质情景之间进行权衡的持续辩论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicenter comparative analysis of local and aggregated data training strategies in COVID-19 outcome prediction with Machine learning.

Machine learning (ML) is a promising tool in assisting clinical decision-making for improving diagnosis and prognosis, especially in developing regions. It is often used with large samples, aggregating data from different regions and hospitals. However, it is unclear how this affects predictions in local centers. This study aims to compare data aggregation strategies of several hospitals in Brazil with a local training strategy in each hospital to predict two COVID-19 outcomes: Intensive Care Unit admission (ICU) and mechanical ventilation use (MV). The study included 6,046 patients from 14 hospitals, with local sample sizes ranging from 47 to 1500 patients. Machine learning models were trained using extreme gradient boosting, lightGBM, and catboost for structured data. Seven data aggregation strategies based on hospital geographic regions were compared with local training, and the best strategy was determined by analyzing the area under the ROC curve (AUROC). SHAP (Shapley Additive exPlanations) values were used to assess the contribution of variables to predictions. Additionally, a metafeatures analysis examined how hospital characteristics influence the selection of the best strategy. The study found that the local training strategy was the most effective approach, in the case of ICU outcomes, for 11 of the 14 hospitals (79%), and, in the case of MV, for 10 hospitals (71%). Metafeatures analysis suggested that hospitals with smaller sample sizes generally performed better using an aggregated data strategy compared to local training. Our study brings to light an important concern about the impact of grouping data from different hospitals in predictive machine learning models. These findings contribute to the ongoing debate about the trade-off between increasing sample size and bringing together heterogeneous scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a youth-friendly internet-enabled HIV risk calculator: A collaborative approach with young key populations, living in Soweto, South Africa. Comparing imputation approaches to handle systematically missing inputs in risk calculators. Specialty-specific Evaluation of Virtual care Outcomes: A retrospective QUality and safety analysis (S-EVOQUe). Explore barriers to using the internet for health information access in African countries: A systematic review. A comparison of CXR-CAD software to radiologists in identifying COVID-19 in individuals evaluated for Sars CoV-2 infection in Malawi and Zambia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1