基于在多维空间中渐进压缩的虚拟向量三角形的合作调节,适用于时变非线性多代理系统。

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS ISA transactions Pub Date : 2025-02-01 DOI:10.1016/j.isatra.2024.12.021
Zhaoxin Wang, Jianchang Liu
{"title":"基于在多维空间中渐进压缩的虚拟向量三角形的合作调节,适用于时变非线性多代理系统。","authors":"Zhaoxin Wang,&nbsp;Jianchang Liu","doi":"10.1016/j.isatra.2024.12.021","DOIUrl":null,"url":null,"abstract":"<div><div>This study constructs virtual vector triangles in multidimensional space to address cooperative control issue in time-varying nonlinear multi-agent systems. The distributed adaptive virtual point and its dynamic equations are designed, with this virtual point, the leader, and the follower being respectively defined as the vertices of the virtual vector triangle. The virtual vector edges, decomposed by vectors into coordinate axis components, are organized to form a closed virtual vector triangle by connecting the three vertices with directed vector arrows that are oriented from the tail to the head. Specifically, these virtual vector edges are fictitious vector line segments connecting two vertices and used to compute the relative Euclidean distances between each vertex in multidimensional space. Based on the established virtual vector triangles, which are placed in multidimensional space, and the novel spatial coordinate transformation method, the cooperative regulation problem of the time-varying nonlinear multi-agent system is transformed into a mathematical problem of compressing the virtual vector triangles with exponential magnitude. The created distributed compression control protocol asymptotically shrinks the magnitude of the virtual vector triangles by exponential oscillatory decay towards the same dynamic point aligned with the motion trajectory of the leader or the leader, where the states of the time-varying nonlinear multi-agent systems achieve asymptotic convergence consensus. The reliable stability of the asymptotic compression convergence process of the virtual vector triangles was verified by establishing a Lyapunov function and relying on the Lyapunov stability theory. Finally, the example of time-varying nonlinear multi-agent systems are presented for simulation experiments to further validate the effectiveness and feasibility of the proposed control protocol in addressing the cooperative regulation issue.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"157 ","pages":"Pages 258-268"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative regulation based on virtual vector triangles asymptotically compressed in multidimensional space for time-varying nonlinear multi-agent systems\",\"authors\":\"Zhaoxin Wang,&nbsp;Jianchang Liu\",\"doi\":\"10.1016/j.isatra.2024.12.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study constructs virtual vector triangles in multidimensional space to address cooperative control issue in time-varying nonlinear multi-agent systems. The distributed adaptive virtual point and its dynamic equations are designed, with this virtual point, the leader, and the follower being respectively defined as the vertices of the virtual vector triangle. The virtual vector edges, decomposed by vectors into coordinate axis components, are organized to form a closed virtual vector triangle by connecting the three vertices with directed vector arrows that are oriented from the tail to the head. Specifically, these virtual vector edges are fictitious vector line segments connecting two vertices and used to compute the relative Euclidean distances between each vertex in multidimensional space. Based on the established virtual vector triangles, which are placed in multidimensional space, and the novel spatial coordinate transformation method, the cooperative regulation problem of the time-varying nonlinear multi-agent system is transformed into a mathematical problem of compressing the virtual vector triangles with exponential magnitude. The created distributed compression control protocol asymptotically shrinks the magnitude of the virtual vector triangles by exponential oscillatory decay towards the same dynamic point aligned with the motion trajectory of the leader or the leader, where the states of the time-varying nonlinear multi-agent systems achieve asymptotic convergence consensus. The reliable stability of the asymptotic compression convergence process of the virtual vector triangles was verified by establishing a Lyapunov function and relying on the Lyapunov stability theory. Finally, the example of time-varying nonlinear multi-agent systems are presented for simulation experiments to further validate the effectiveness and feasibility of the proposed control protocol in addressing the cooperative regulation issue.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"157 \",\"pages\":\"Pages 258-268\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824006104\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824006104","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决时变非线性多智能体系统的协同控制问题,在多维空间构造虚拟向量三角形。设计了分布式自适应虚拟点及其动力学方程,并将该虚拟点、leader点和follower点分别定义为虚拟向量三角形的顶点。虚拟向量边被向量分解成坐标轴分量,通过将三个顶点与从尾部指向头部的有向向量箭头连接起来,组织成一个封闭的虚拟向量三角形。具体来说,这些虚拟向量边是连接两个顶点的虚拟向量线段,用于计算多维空间中每个顶点之间的相对欧几里德距离。基于建立的多维空间虚拟向量三角形,采用新的空间坐标变换方法,将时变非线性多智能体系统的协同调节问题转化为对虚拟向量三角形进行指数压缩的数学问题。所创建的分布式压缩控制协议通过指数振荡衰减,使虚拟向量三角形的大小向与前导或前导运动轨迹一致的同一动态点渐近收缩,时变非线性多智能体系统的状态达到渐近收敛一致。通过建立Lyapunov函数,并依托Lyapunov稳定性理论,验证了虚向量三角形渐近压缩收敛过程的可靠稳定性。最后,以时变非线性多智能体系统为例进行了仿真实验,进一步验证了所提出的控制协议在解决协同调节问题方面的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative regulation based on virtual vector triangles asymptotically compressed in multidimensional space for time-varying nonlinear multi-agent systems
This study constructs virtual vector triangles in multidimensional space to address cooperative control issue in time-varying nonlinear multi-agent systems. The distributed adaptive virtual point and its dynamic equations are designed, with this virtual point, the leader, and the follower being respectively defined as the vertices of the virtual vector triangle. The virtual vector edges, decomposed by vectors into coordinate axis components, are organized to form a closed virtual vector triangle by connecting the three vertices with directed vector arrows that are oriented from the tail to the head. Specifically, these virtual vector edges are fictitious vector line segments connecting two vertices and used to compute the relative Euclidean distances between each vertex in multidimensional space. Based on the established virtual vector triangles, which are placed in multidimensional space, and the novel spatial coordinate transformation method, the cooperative regulation problem of the time-varying nonlinear multi-agent system is transformed into a mathematical problem of compressing the virtual vector triangles with exponential magnitude. The created distributed compression control protocol asymptotically shrinks the magnitude of the virtual vector triangles by exponential oscillatory decay towards the same dynamic point aligned with the motion trajectory of the leader or the leader, where the states of the time-varying nonlinear multi-agent systems achieve asymptotic convergence consensus. The reliable stability of the asymptotic compression convergence process of the virtual vector triangles was verified by establishing a Lyapunov function and relying on the Lyapunov stability theory. Finally, the example of time-varying nonlinear multi-agent systems are presented for simulation experiments to further validate the effectiveness and feasibility of the proposed control protocol in addressing the cooperative regulation issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
期刊最新文献
Editorial Board The fast bearing diagnosis based on adaptive GSR of fault feature amplification in scale-transformed fractional oscillator An adaptive neural network approach for resilient leader-following consensus control of multi-agent systems under cyber-attacks MIMO ultra-local model-based adaptive enhanced model-free control using extremum-seeking for coupled mechatronic systems A robust hybrid estimation method for local bearing defect size based on analytical model and morphological analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1