基于宏观标本、顺应性方法和三维生物忠实数值模拟的评估人骨横向韧性的综合方法。

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-12-18 DOI:10.1016/j.jmbbm.2024.106869
T. Kurtz , Y. Godio-Raboutet , F.L.B. Ribeiro , J.-L. Tailhan
{"title":"基于宏观标本、顺应性方法和三维生物忠实数值模拟的评估人骨横向韧性的综合方法。","authors":"T. Kurtz ,&nbsp;Y. Godio-Raboutet ,&nbsp;F.L.B. Ribeiro ,&nbsp;J.-L. Tailhan","doi":"10.1016/j.jmbbm.2024.106869","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a method for assessing the transverse toughness of human long-bone cortical tissue. The method is based on a three-point bending test of pre-notched femur diaphysis segments, post-processed using the compliance method coupled with numerical simulations. Given the cracking nature of bone and if cracking processes remain confined to the crack tip, it is assumed that the compliance method can be used. Numerical simulations are based on a bio-faithful 3D reconstruction of the bones tested and a detailed consideration of the boundary and loading conditions of the mechanical test. The resulting toughness values obtained on embalmed bones range from <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>=4.3 to 7.1 N/mm. The assumptions made, the biofidelity of the simulations, and the ability of the method to determine an intrinsic toughness value of cortical bone, considered a heterogeneous material, are discussed. Although related to embalmed bones, and considering the limitations this state can induce, the toughness values obtained are consistent with data from the literature. Due to the larger specimen size, they are also more realistic, ensuring a complete description of the material’s crack extension resistance curve. They mainly characterize the medial and lateral quadrants of the bone transversal section. The study concludes that the proposed method provides a robust approach for assessing bone transversal toughness.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106869"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive methodology to assess human bone transversal toughness based on macroscopic specimens, the compliance method, and 3D bio-faithful numerical simulations\",\"authors\":\"T. Kurtz ,&nbsp;Y. Godio-Raboutet ,&nbsp;F.L.B. Ribeiro ,&nbsp;J.-L. Tailhan\",\"doi\":\"10.1016/j.jmbbm.2024.106869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a method for assessing the transverse toughness of human long-bone cortical tissue. The method is based on a three-point bending test of pre-notched femur diaphysis segments, post-processed using the compliance method coupled with numerical simulations. Given the cracking nature of bone and if cracking processes remain confined to the crack tip, it is assumed that the compliance method can be used. Numerical simulations are based on a bio-faithful 3D reconstruction of the bones tested and a detailed consideration of the boundary and loading conditions of the mechanical test. The resulting toughness values obtained on embalmed bones range from <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>=4.3 to 7.1 N/mm. The assumptions made, the biofidelity of the simulations, and the ability of the method to determine an intrinsic toughness value of cortical bone, considered a heterogeneous material, are discussed. Although related to embalmed bones, and considering the limitations this state can induce, the toughness values obtained are consistent with data from the literature. Due to the larger specimen size, they are also more realistic, ensuring a complete description of the material’s crack extension resistance curve. They mainly characterize the medial and lateral quadrants of the bone transversal section. The study concludes that the proposed method provides a robust approach for assessing bone transversal toughness.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"163 \",\"pages\":\"Article 106869\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124005010\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124005010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种评估人类长骨皮质组织横向韧性的方法。该方法基于预缺口股骨骨干段的三点弯曲试验,采用柔度法结合数值模拟进行后处理。鉴于骨的开裂性质,如果开裂过程仍然局限于裂纹尖端,假设顺应性方法可以使用。数值模拟是基于测试骨骼的生物忠实三维重建,并详细考虑了力学测试的边界和加载条件。在防腐骨上得到的韧性值从Gc=4.3到7.1 N/mm不等。讨论了所做的假设,模拟的生物保真度,以及该方法确定异质材料皮质骨的固有韧性值的能力。虽然与防腐骨有关,并且考虑到这种状态可能引起的局限性,但得到的韧性值与文献数据一致。由于试样尺寸较大,它们也更真实,确保了材料裂纹扩展阻力曲线的完整描述。它们主要表现为骨横切面的内侧和外侧象限。该研究的结论是,所提出的方法为评估骨横向韧性提供了一种可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive methodology to assess human bone transversal toughness based on macroscopic specimens, the compliance method, and 3D bio-faithful numerical simulations
This study proposes a method for assessing the transverse toughness of human long-bone cortical tissue. The method is based on a three-point bending test of pre-notched femur diaphysis segments, post-processed using the compliance method coupled with numerical simulations. Given the cracking nature of bone and if cracking processes remain confined to the crack tip, it is assumed that the compliance method can be used. Numerical simulations are based on a bio-faithful 3D reconstruction of the bones tested and a detailed consideration of the boundary and loading conditions of the mechanical test. The resulting toughness values obtained on embalmed bones range from Gc=4.3 to 7.1 N/mm. The assumptions made, the biofidelity of the simulations, and the ability of the method to determine an intrinsic toughness value of cortical bone, considered a heterogeneous material, are discussed. Although related to embalmed bones, and considering the limitations this state can induce, the toughness values obtained are consistent with data from the literature. Due to the larger specimen size, they are also more realistic, ensuring a complete description of the material’s crack extension resistance curve. They mainly characterize the medial and lateral quadrants of the bone transversal section. The study concludes that the proposed method provides a robust approach for assessing bone transversal toughness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Editorial Board Mechanical modulation of docetaxel-treated bladder cancer cells by various changes in cytoskeletal structures Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy On the repeatability of wrinkling topography patterns in the fingers of water immersed human skin Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1