Muhamad Dwi Septiyanto, Eko Prasetya Budiana, Syamsul Hadi
{"title":"用于模拟简单油液剪切流中瞬态液滴扩散的新型 RBF-DDM 方法","authors":"Muhamad Dwi Septiyanto, Eko Prasetya Budiana, Syamsul Hadi","doi":"10.1016/j.enganabound.2024.106099","DOIUrl":null,"url":null,"abstract":"<div><div>This current numerical model of droplet spreading in a simple oil shear flow is assessed using a hybrid combination of the radial basis function (RBF) and domain decomposition method (DDM). The complex interfacial interaction understanding of oil-water is challenging to consider appropriately with the RBF-DDM numerical solution. The governing equations, which consist of the Navier-Stokes equation in primitive variable form, the Cahn-Hilliard equation, and the Poisson equation, are solved using the Radial Basis Function (RBF) method for spatial derivatives and the forward Euler method for time derivatives. This combination of RBF and DDM successfully addressed the complex domain multifluid interaction, with the dense matrix solved in several subdomains. The capillary number (Ca) and initial oil velocity are two independent variables analyzed, with the deformation coefficient serving as the primary dependent variable. The findings reveal that both variables affect the deformation coefficient presented with the deformation based on non-dimensionalization time. As theoretically stated, the interfacial tension is inversely proportional to the Ca, meaning that a possibly high Ca leads to a higher deformation coefficient. To get accurate elaboration, the convergence analysis and statistical model analysis use root mean square divergence (RMSDIV) and root mean square error (RMSE), respectively.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106099"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel RBF-DDM method for modelling transient droplet spreading in simple oil shear flow\",\"authors\":\"Muhamad Dwi Septiyanto, Eko Prasetya Budiana, Syamsul Hadi\",\"doi\":\"10.1016/j.enganabound.2024.106099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This current numerical model of droplet spreading in a simple oil shear flow is assessed using a hybrid combination of the radial basis function (RBF) and domain decomposition method (DDM). The complex interfacial interaction understanding of oil-water is challenging to consider appropriately with the RBF-DDM numerical solution. The governing equations, which consist of the Navier-Stokes equation in primitive variable form, the Cahn-Hilliard equation, and the Poisson equation, are solved using the Radial Basis Function (RBF) method for spatial derivatives and the forward Euler method for time derivatives. This combination of RBF and DDM successfully addressed the complex domain multifluid interaction, with the dense matrix solved in several subdomains. The capillary number (Ca) and initial oil velocity are two independent variables analyzed, with the deformation coefficient serving as the primary dependent variable. The findings reveal that both variables affect the deformation coefficient presented with the deformation based on non-dimensionalization time. As theoretically stated, the interfacial tension is inversely proportional to the Ca, meaning that a possibly high Ca leads to a higher deformation coefficient. To get accurate elaboration, the convergence analysis and statistical model analysis use root mean square divergence (RMSDIV) and root mean square error (RMSE), respectively.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"171 \",\"pages\":\"Article 106099\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724005721\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005721","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel RBF-DDM method for modelling transient droplet spreading in simple oil shear flow
This current numerical model of droplet spreading in a simple oil shear flow is assessed using a hybrid combination of the radial basis function (RBF) and domain decomposition method (DDM). The complex interfacial interaction understanding of oil-water is challenging to consider appropriately with the RBF-DDM numerical solution. The governing equations, which consist of the Navier-Stokes equation in primitive variable form, the Cahn-Hilliard equation, and the Poisson equation, are solved using the Radial Basis Function (RBF) method for spatial derivatives and the forward Euler method for time derivatives. This combination of RBF and DDM successfully addressed the complex domain multifluid interaction, with the dense matrix solved in several subdomains. The capillary number (Ca) and initial oil velocity are two independent variables analyzed, with the deformation coefficient serving as the primary dependent variable. The findings reveal that both variables affect the deformation coefficient presented with the deformation based on non-dimensionalization time. As theoretically stated, the interfacial tension is inversely proportional to the Ca, meaning that a possibly high Ca leads to a higher deformation coefficient. To get accurate elaboration, the convergence analysis and statistical model analysis use root mean square divergence (RMSDIV) and root mean square error (RMSE), respectively.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.