CSFRNet:整合服装身份意识,实现人的长期再认同

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-12-30 DOI:10.1007/s11263-024-02315-0
Yan Huang, Yan Huang, Zhang Zhang, Qiang Wu, Yi Zhong, Liang Wang
{"title":"CSFRNet:整合服装身份意识,实现人的长期再认同","authors":"Yan Huang, Yan Huang, Zhang Zhang, Qiang Wu, Yi Zhong, Liang Wang","doi":"10.1007/s11263-024-02315-0","DOIUrl":null,"url":null,"abstract":"<p>Addressing the dynamic nature of long-term person re-identification (LT-reID) amid varying clothing conditions necessitates a departure from conventional methods. Traditional LT-reID strategies, mainly biometrics-based and data adaptation-based, each have their pitfalls. The former falters in environments lacking high-quality biometric data, while the latter loses efficacy with minimal or subtle clothing changes. To overcome these obstacles, we propose the clothing status-aware feature regularization network (CSFRNet). This novel approach seamlessly incorporates clothing status awareness into the feature learning process, significantly enhancing the adaptability and accuracy of LT-reID systems where clothing can either change completely, partially, or not at all over time, without the need for explicit clothing labels. The versatility of our CSFRNet is showcased on diverse LT-reID benchmarks, including Celeb-reID, Celeb-reID-light, PRCC, DeepChange, and LTCC, marking a significant advancement in the field by addressing the real-world variability of clothing in LT-reID scenarios.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"48 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSFRNet: Integrating Clothing Status Awareness for Long-Term Person Re-identification\",\"authors\":\"Yan Huang, Yan Huang, Zhang Zhang, Qiang Wu, Yi Zhong, Liang Wang\",\"doi\":\"10.1007/s11263-024-02315-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Addressing the dynamic nature of long-term person re-identification (LT-reID) amid varying clothing conditions necessitates a departure from conventional methods. Traditional LT-reID strategies, mainly biometrics-based and data adaptation-based, each have their pitfalls. The former falters in environments lacking high-quality biometric data, while the latter loses efficacy with minimal or subtle clothing changes. To overcome these obstacles, we propose the clothing status-aware feature regularization network (CSFRNet). This novel approach seamlessly incorporates clothing status awareness into the feature learning process, significantly enhancing the adaptability and accuracy of LT-reID systems where clothing can either change completely, partially, or not at all over time, without the need for explicit clothing labels. The versatility of our CSFRNet is showcased on diverse LT-reID benchmarks, including Celeb-reID, Celeb-reID-light, PRCC, DeepChange, and LTCC, marking a significant advancement in the field by addressing the real-world variability of clothing in LT-reID scenarios.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02315-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02315-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在不同的服装条件下解决长期人员重新识别(LT-reID)的动态性需要与传统方法不同。传统的LT-reID策略,主要是基于生物特征和数据适应,都有其缺陷。前者在缺乏高质量生物特征数据的环境中表现不佳,而后者在最小或细微的服装变化中失去功效。为了克服这些障碍,我们提出了服装状态感知特征正则化网络(CSFRNet)。这种新颖的方法将服装状态感知无缝地整合到特征学习过程中,显著提高了LT-reID系统的适应性和准确性,在这种系统中,服装可以随着时间的推移完全、部分或根本不改变,而不需要明确的服装标签。我们的CSFRNet的多功能性在各种LT-reID基准测试中得到了展示,包括Celeb-reID、Celeb-reID-light、PRCC、DeepChange和LTCC,通过解决LT-reID场景中服装的真实可变性,标志着该领域的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSFRNet: Integrating Clothing Status Awareness for Long-Term Person Re-identification

Addressing the dynamic nature of long-term person re-identification (LT-reID) amid varying clothing conditions necessitates a departure from conventional methods. Traditional LT-reID strategies, mainly biometrics-based and data adaptation-based, each have their pitfalls. The former falters in environments lacking high-quality biometric data, while the latter loses efficacy with minimal or subtle clothing changes. To overcome these obstacles, we propose the clothing status-aware feature regularization network (CSFRNet). This novel approach seamlessly incorporates clothing status awareness into the feature learning process, significantly enhancing the adaptability and accuracy of LT-reID systems where clothing can either change completely, partially, or not at all over time, without the need for explicit clothing labels. The versatility of our CSFRNet is showcased on diverse LT-reID benchmarks, including Celeb-reID, Celeb-reID-light, PRCC, DeepChange, and LTCC, marking a significant advancement in the field by addressing the real-world variability of clothing in LT-reID scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Sample-Cohesive Pose-Aware Contrastive Facial Representation Learning Learning with Enriched Inductive Biases for Vision-Language Models Image Synthesis Under Limited Data: A Survey and Taxonomy Dual-Space Video Person Re-identification SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1