Luca Leonforte, Xuejian Sun, Davide Valenti, Bernardo Spagnolo, Fabrizio Illuminati, Angelo Carollo and Francesco Ciccarello
{"title":"结构光子浴中巨原子的量子光学","authors":"Luca Leonforte, Xuejian Sun, Davide Valenti, Bernardo Spagnolo, Fabrizio Illuminati, Angelo Carollo and Francesco Ciccarello","doi":"10.1088/2058-9565/ada08d","DOIUrl":null,"url":null,"abstract":"We present a general framework to tackle quantum optics problems with giant atoms, i.e. quantum emitters each coupled non-locally to a structured photonic bath (typically a lattice) of any dimension. The theory encompasses the calculation and general properties of Green’s functions, atom-photon bound states, collective master equations and decoherence-free Hamiltonians (DFHs), and is underpinned by a formalism where a giant atom is formally viewed as a normal atom lying at a fictitious location. As a major application, we provide for the first time a general criterion to predict/engineer DFHs of giant atoms, which can be applied both in and out of the photonic continuum and regardless of the structure or dimensionality of the photonic bath. This is used to show novel DFHs in 2D baths such as a square lattice, photonic graphene and an extended photonic Lieb lattice.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"33 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum optics with giant atoms in a structured photonic bath\",\"authors\":\"Luca Leonforte, Xuejian Sun, Davide Valenti, Bernardo Spagnolo, Fabrizio Illuminati, Angelo Carollo and Francesco Ciccarello\",\"doi\":\"10.1088/2058-9565/ada08d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general framework to tackle quantum optics problems with giant atoms, i.e. quantum emitters each coupled non-locally to a structured photonic bath (typically a lattice) of any dimension. The theory encompasses the calculation and general properties of Green’s functions, atom-photon bound states, collective master equations and decoherence-free Hamiltonians (DFHs), and is underpinned by a formalism where a giant atom is formally viewed as a normal atom lying at a fictitious location. As a major application, we provide for the first time a general criterion to predict/engineer DFHs of giant atoms, which can be applied both in and out of the photonic continuum and regardless of the structure or dimensionality of the photonic bath. This is used to show novel DFHs in 2D baths such as a square lattice, photonic graphene and an extended photonic Lieb lattice.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ada08d\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ada08d","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum optics with giant atoms in a structured photonic bath
We present a general framework to tackle quantum optics problems with giant atoms, i.e. quantum emitters each coupled non-locally to a structured photonic bath (typically a lattice) of any dimension. The theory encompasses the calculation and general properties of Green’s functions, atom-photon bound states, collective master equations and decoherence-free Hamiltonians (DFHs), and is underpinned by a formalism where a giant atom is formally viewed as a normal atom lying at a fictitious location. As a major application, we provide for the first time a general criterion to predict/engineer DFHs of giant atoms, which can be applied both in and out of the photonic continuum and regardless of the structure or dimensionality of the photonic bath. This is used to show novel DFHs in 2D baths such as a square lattice, photonic graphene and an extended photonic Lieb lattice.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.