胚后急性星形细胞和神经元对谷氨酸能蛋白表达的调控。

IF 2.5 4区 医学 Q3 NEUROSCIENCES Neuroscience Letters Pub Date : 2025-02-06 DOI:10.1016/j.neulet.2024.138108
Carly Norris , Susan F. Murphy , Pamela J. VandeVord
{"title":"胚后急性星形细胞和神经元对谷氨酸能蛋白表达的调控。","authors":"Carly Norris ,&nbsp;Susan F. Murphy ,&nbsp;Pamela J. VandeVord","doi":"10.1016/j.neulet.2024.138108","DOIUrl":null,"url":null,"abstract":"<div><div>Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI. Animals were exposed to a blast with magnitudes ranging from 16 to 20 psi using an Advanced Blast Simulator, and western blotting was performed to compare changes in protein expression between blast and sham groups. Glial fibrillary acidic protein (GFAP) was increased at 24 h, consistent with astrocyte reactivity, yet no other proteins showed significant changes in expression at acute time points following blast (GS, GLT-1, GluN1, GluN2A, GluN2B). Therefore, these glutamate regulators likely do not play a major role in contributing to acute excitotoxicity or glial reactivity when analyzed by whole brain region. Investigation of substructural and subregional effects in future studies, particularly within the hippocampus (e.g., dentate gyrus, CA1, CA2, CA3), may reveal localized changes in expression and/or NMDAR subunit composition capable of potentiating bTBI molecular cascades. Nevertheless, alternative regulators are likely to demonstrate greater sensitivity as acute therapeutic targets contributing to bTBI pathophysiology following single blast exposure.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"848 ","pages":"Article 138108"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast\",\"authors\":\"Carly Norris ,&nbsp;Susan F. Murphy ,&nbsp;Pamela J. VandeVord\",\"doi\":\"10.1016/j.neulet.2024.138108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI. Animals were exposed to a blast with magnitudes ranging from 16 to 20 psi using an Advanced Blast Simulator, and western blotting was performed to compare changes in protein expression between blast and sham groups. Glial fibrillary acidic protein (GFAP) was increased at 24 h, consistent with astrocyte reactivity, yet no other proteins showed significant changes in expression at acute time points following blast (GS, GLT-1, GluN1, GluN2A, GluN2B). Therefore, these glutamate regulators likely do not play a major role in contributing to acute excitotoxicity or glial reactivity when analyzed by whole brain region. Investigation of substructural and subregional effects in future studies, particularly within the hippocampus (e.g., dentate gyrus, CA1, CA2, CA3), may reveal localized changes in expression and/or NMDAR subunit composition capable of potentiating bTBI molecular cascades. Nevertheless, alternative regulators are likely to demonstrate greater sensitivity as acute therapeutic targets contributing to bTBI pathophysiology following single blast exposure.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"848 \",\"pages\":\"Article 138108\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394024004877\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024004877","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过谷氨酸-谷氨酰胺循环调节谷氨酸对调节神经系统可塑性至关重要。爆炸诱导的创伤性脑损伤(bTBI)与谷氨酸依赖性兴奋性毒性有关,这可能会加剧慢性疾病,如创伤后癫痫。本研究的目的是测量大鼠创伤性脑损伤模型中单次爆炸暴露后4-、12-和24 h时皮层和海马中负责谷氨酸能调节的星形细胞和神经元蛋白的表达变化。使用先进的爆炸模拟器将动物暴露在16至20 psi的爆炸中,并进行western blotting来比较爆炸组和假组之间蛋白质表达的变化。胶质原纤维酸性蛋白(GFAP)在24 h时升高,与星形胶质细胞的反应性一致,而其他蛋白(GS、GLT-1、GluN1、GluN2A、GluN2B)在爆炸后急性时间点的表达均无显著变化。因此,当对整个脑区进行分析时,这些谷氨酸调节因子可能在急性兴奋性毒性或神经胶质反应性中不起主要作用。在未来的研究中,对亚结构和次区域效应的研究,特别是在海马(如齿状回,CA1, CA2, CA3)中,可能会揭示局部表达和/或NMDAR亚基组成的变化,这些变化能够增强bTBI分子级联反应。然而,在单次爆炸暴露后,替代调节剂可能表现出更大的敏感性,作为急性治疗靶点,有助于bTBI病理生理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast
Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI. Animals were exposed to a blast with magnitudes ranging from 16 to 20 psi using an Advanced Blast Simulator, and western blotting was performed to compare changes in protein expression between blast and sham groups. Glial fibrillary acidic protein (GFAP) was increased at 24 h, consistent with astrocyte reactivity, yet no other proteins showed significant changes in expression at acute time points following blast (GS, GLT-1, GluN1, GluN2A, GluN2B). Therefore, these glutamate regulators likely do not play a major role in contributing to acute excitotoxicity or glial reactivity when analyzed by whole brain region. Investigation of substructural and subregional effects in future studies, particularly within the hippocampus (e.g., dentate gyrus, CA1, CA2, CA3), may reveal localized changes in expression and/or NMDAR subunit composition capable of potentiating bTBI molecular cascades. Nevertheless, alternative regulators are likely to demonstrate greater sensitivity as acute therapeutic targets contributing to bTBI pathophysiology following single blast exposure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
期刊最新文献
Inflammatory pain modifies reward preferences from larger delayed to smaller immediate rewards in male rats Delayed treatment with TGF-β1 associated neuroprotection in trimethyltin-induced hippocampal neurodegeneration MiR-222-3p regulates methamphetamine-induced behavioral sensitization through PP2A–AKT signaling pathway in the dorsal striatum of male mice Role of pentosidine accumulation in stress-induced social behavioral deficits Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1