Antonina P Maxey, Sage J Wheeler, Jaya M Travis, Megan L McCain
{"title":"人造人μ子宫对前列腺素和炎症细胞因子的收缩反应。","authors":"Antonina P Maxey, Sage J Wheeler, Jaya M Travis, Megan L McCain","doi":"10.1063/5.0233737","DOIUrl":null,"url":null,"abstract":"<p><p>Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (<i>μ</i>myometrium) on compliant hydrogels designed for traction force microscopy. We then measured <i>μ</i>myometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our <i>μ</i>myometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 4","pages":"046115"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contractile responses of engineered human <i>μ</i>myometrium to prostaglandins and inflammatory cytokines.\",\"authors\":\"Antonina P Maxey, Sage J Wheeler, Jaya M Travis, Megan L McCain\",\"doi\":\"10.1063/5.0233737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (<i>μ</i>myometrium) on compliant hydrogels designed for traction force microscopy. We then measured <i>μ</i>myometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our <i>μ</i>myometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"8 4\",\"pages\":\"046115\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233737\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0233737","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Contractile responses of engineered human μmyometrium to prostaglandins and inflammatory cytokines.
Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (μmyometrium) on compliant hydrogels designed for traction force microscopy. We then measured μmyometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our μmyometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology