分生炭疽菌的形态变异和粘附分布。

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.3389/ffunb.2024.1481865
Caleb Oliver Bedsole, Mary Cowser, Timothy Martin, Jillian Hamilton, Lucia Gonzalez Rodriguez, Thomas M Chappell, Brian D Shaw
{"title":"分生炭疽菌的形态变异和粘附分布。","authors":"Caleb Oliver Bedsole, Mary Cowser, Timothy Martin, Jillian Hamilton, Lucia Gonzalez Rodriguez, Thomas M Chappell, Brian D Shaw","doi":"10.3389/ffunb.2024.1481865","DOIUrl":null,"url":null,"abstract":"<p><p><i>Colletotrichum</i> is a globally significant genus of plant pathogens known for causing anthracnose across a diverse array of hosts. Notably, <i>Colletotrichum graminicola</i> is a pathogen affecting maize. Annually, the global economic impact of this pathogen reaches billions of US dollars. <i>C. graminicola</i> produces conidia that have a characteristic falcate shape and are dispersed by rain. Upon attachment to maize leaves, these conidia develop melanized appressoria to penetrate the leaf surface to initiate disease. Recent findings have emphasized the existence of an adhesive strip on only one side of <i>C. graminicola</i> conidia. This strip colocalizes with an actin array, playing a crucial role in facilitating attachment and germination. This asymmetrical adhesive was postulated to enhance spore dispersal by assuring that some conidia do not attach to their initial deposition site. The extent of this asymmetric adhesive phenotype in other <i>Colletotrichum</i> species remains unknown, raising questions about its conservation within the genus. This study reveals the ubiquitous presence of an asymmetric adhesive on the conidia across nine isolates of <i>Colletotrichum</i>, representing eight species. Morphological differences in conidium shape and adhesive distribution were observed. Significantly, <i>Colletotrichum truncatum</i> is unique from other observed species by exhibiting an adhesive strip on both sides of its conidium. Furthermore, in <i>C. graminicola</i>, we noted a simultaneous development of the actin array and detachment from its mother cell after spore development. We posit that the study of other <i>Colletotrichum</i> members holds promise in elucidating the evolutionary trajectory of this phenotype. Furthermore, these insights may prove instrumental in understanding spore dispersal dynamics across diverse hosts, shedding light on the intricate web of host specificity within the genus.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1481865"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671520/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morphological variations and adhesive distribution: a cross-species examination in <i>Colletotrichum</i> conidia.\",\"authors\":\"Caleb Oliver Bedsole, Mary Cowser, Timothy Martin, Jillian Hamilton, Lucia Gonzalez Rodriguez, Thomas M Chappell, Brian D Shaw\",\"doi\":\"10.3389/ffunb.2024.1481865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Colletotrichum</i> is a globally significant genus of plant pathogens known for causing anthracnose across a diverse array of hosts. Notably, <i>Colletotrichum graminicola</i> is a pathogen affecting maize. Annually, the global economic impact of this pathogen reaches billions of US dollars. <i>C. graminicola</i> produces conidia that have a characteristic falcate shape and are dispersed by rain. Upon attachment to maize leaves, these conidia develop melanized appressoria to penetrate the leaf surface to initiate disease. Recent findings have emphasized the existence of an adhesive strip on only one side of <i>C. graminicola</i> conidia. This strip colocalizes with an actin array, playing a crucial role in facilitating attachment and germination. This asymmetrical adhesive was postulated to enhance spore dispersal by assuring that some conidia do not attach to their initial deposition site. The extent of this asymmetric adhesive phenotype in other <i>Colletotrichum</i> species remains unknown, raising questions about its conservation within the genus. This study reveals the ubiquitous presence of an asymmetric adhesive on the conidia across nine isolates of <i>Colletotrichum</i>, representing eight species. Morphological differences in conidium shape and adhesive distribution were observed. Significantly, <i>Colletotrichum truncatum</i> is unique from other observed species by exhibiting an adhesive strip on both sides of its conidium. Furthermore, in <i>C. graminicola</i>, we noted a simultaneous development of the actin array and detachment from its mother cell after spore development. We posit that the study of other <i>Colletotrichum</i> members holds promise in elucidating the evolutionary trajectory of this phenotype. Furthermore, these insights may prove instrumental in understanding spore dispersal dynamics across diverse hosts, shedding light on the intricate web of host specificity within the genus.</p>\",\"PeriodicalId\":73084,\"journal\":{\"name\":\"Frontiers in fungal biology\",\"volume\":\"5 \",\"pages\":\"1481865\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in fungal biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffunb.2024.1481865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2024.1481865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Colletotrichum 是一种具有全球重要意义的植物病原体属,以在多种寄主上引起炭疽病而闻名。值得注意的是,Colletotrichum graminicola 是一种影响玉米的病原体。每年,这种病原体对全球经济的影响高达数十亿美元。C. graminicola 产生的分生孢子具有镰刀状的特征,并随雨水传播。这些分生孢子附着在玉米叶片上后,会形成黑色化的附着体,穿透叶片表面引发病害。最近的研究结果表明,禾本科菌的分生孢子只有一面有粘着条。该粘附带与肌动蛋白阵列共定位,在促进附着和发芽方面发挥着关键作用。据推测,这种不对称的粘附力能确保一些分生孢子不附着在最初的沉积部位,从而促进孢子的扩散。这种非对称粘附表型在其他 Colletotrichum 种类中的应用程度仍不清楚,这就引起了该属中是否保留这种表型的问题。本研究揭示了在代表 8 个种的 9 个 Colletotrichum 分离物中分生孢子上普遍存在的不对称粘附现象。分生孢子的形状和粘合剂的分布存在形态差异。值得注意的是,Colletotrichum truncatum 与其他已观察到的物种不同,其分生孢子体两侧都有粘合剂。此外,在禾谷壳菌中,我们注意到在孢子发育后,其肌动蛋白阵列和脱离母细胞的过程是同时进行的。我们认为,对其他 Colletotrichum 成员的研究有望阐明这种表型的进化轨迹。此外,这些见解可能有助于了解孢子在不同宿主间的传播动态,从而揭示该属中错综复杂的宿主特异性网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological variations and adhesive distribution: a cross-species examination in Colletotrichum conidia.

Colletotrichum is a globally significant genus of plant pathogens known for causing anthracnose across a diverse array of hosts. Notably, Colletotrichum graminicola is a pathogen affecting maize. Annually, the global economic impact of this pathogen reaches billions of US dollars. C. graminicola produces conidia that have a characteristic falcate shape and are dispersed by rain. Upon attachment to maize leaves, these conidia develop melanized appressoria to penetrate the leaf surface to initiate disease. Recent findings have emphasized the existence of an adhesive strip on only one side of C. graminicola conidia. This strip colocalizes with an actin array, playing a crucial role in facilitating attachment and germination. This asymmetrical adhesive was postulated to enhance spore dispersal by assuring that some conidia do not attach to their initial deposition site. The extent of this asymmetric adhesive phenotype in other Colletotrichum species remains unknown, raising questions about its conservation within the genus. This study reveals the ubiquitous presence of an asymmetric adhesive on the conidia across nine isolates of Colletotrichum, representing eight species. Morphological differences in conidium shape and adhesive distribution were observed. Significantly, Colletotrichum truncatum is unique from other observed species by exhibiting an adhesive strip on both sides of its conidium. Furthermore, in C. graminicola, we noted a simultaneous development of the actin array and detachment from its mother cell after spore development. We posit that the study of other Colletotrichum members holds promise in elucidating the evolutionary trajectory of this phenotype. Furthermore, these insights may prove instrumental in understanding spore dispersal dynamics across diverse hosts, shedding light on the intricate web of host specificity within the genus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Editorial: Fungal virulence. Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes. Minimal domain peptides derived from enterocins exhibit potent antifungal activity. Advancements in lipid production research using the koji-mold Aspergillus oryzae and future outlook. Morphological variations and adhesive distribution: a cross-species examination in Colletotrichum conidia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1