磁齿轮双速传动的非线性磁-机械联合振动特性

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-11-14 DOI:10.1007/s11012-024-01909-9
Junliang Du, Dawei Liu, Tingzhi Ren, Yixuan Tian
{"title":"磁齿轮双速传动的非线性磁-机械联合振动特性","authors":"Junliang Du,&nbsp;Dawei Liu,&nbsp;Tingzhi Ren,&nbsp;Yixuan Tian","doi":"10.1007/s11012-024-01909-9","DOIUrl":null,"url":null,"abstract":"<div><p>The replacement of mechanical planetary gears with magnetic gears (MGs) is an emerging transmission solution for electric vehicles that reduce shock and vibration. This article proposes magnetic two-speed transmission and examines the influence of the noncontact torque of MGs, the meshing stiffness of mechanical gears, and the system load on the vibration of magneto-mechanical combined transmission systems. First, the noncontact torque of an MG is analysed on the basis of the magnetic field modulation principle. A set of dynamic equations was subsequently constructed on the basis of the centralized parameter method. Thereafter, with the principle of harmonic balance, a rapid method for constructing a nonlinear vibration harmonic balance solution for a magneto-mechanical combined vibration system in matrix form is obtained. Finally, simulations and prototype tests were conducted. The results show that noncontact torque consists of stable torque and ripple torque. They also interact with mechanical gears to affect system vibration. he vibration amplitude of the inner rotor is sensitive to the pulsating torque, whereas the vibration of the ferromagnetic pole-pieces is sensitive to the meshing stiffness. The stable torque and load dynamic balance affect the natural frequency of the system. The system demonstrates “load‒stiffness adaptive” characteristics compared with those of pure mechanical gearing. The proposed Harmonic Balance Method can quickly calculate this characteristic, and it offers a theoretical basis for dynamic analysis and vibration reduction in magnetic two-speed transmissions.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 12","pages":"2295 - 2312"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear magneto-mechanical combined vibration characteristics of magnetic gear two-speed transmission\",\"authors\":\"Junliang Du,&nbsp;Dawei Liu,&nbsp;Tingzhi Ren,&nbsp;Yixuan Tian\",\"doi\":\"10.1007/s11012-024-01909-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The replacement of mechanical planetary gears with magnetic gears (MGs) is an emerging transmission solution for electric vehicles that reduce shock and vibration. This article proposes magnetic two-speed transmission and examines the influence of the noncontact torque of MGs, the meshing stiffness of mechanical gears, and the system load on the vibration of magneto-mechanical combined transmission systems. First, the noncontact torque of an MG is analysed on the basis of the magnetic field modulation principle. A set of dynamic equations was subsequently constructed on the basis of the centralized parameter method. Thereafter, with the principle of harmonic balance, a rapid method for constructing a nonlinear vibration harmonic balance solution for a magneto-mechanical combined vibration system in matrix form is obtained. Finally, simulations and prototype tests were conducted. The results show that noncontact torque consists of stable torque and ripple torque. They also interact with mechanical gears to affect system vibration. he vibration amplitude of the inner rotor is sensitive to the pulsating torque, whereas the vibration of the ferromagnetic pole-pieces is sensitive to the meshing stiffness. The stable torque and load dynamic balance affect the natural frequency of the system. The system demonstrates “load‒stiffness adaptive” characteristics compared with those of pure mechanical gearing. The proposed Harmonic Balance Method can quickly calculate this characteristic, and it offers a theoretical basis for dynamic analysis and vibration reduction in magnetic two-speed transmissions.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 12\",\"pages\":\"2295 - 2312\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01909-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01909-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

用磁性齿轮(mg)代替机械行星齿轮是电动汽车减少冲击和振动的一种新兴传动解决方案。本文提出了磁力双速传动,并研究了磁力双速传动的非接触转矩、机械齿轮的啮合刚度和系统负载对磁力-机械联合传动系统振动的影响。首先,基于磁场调制原理分析了永磁转子的非接触转矩。基于集中参数法,建立了一组动力学方程。在此基础上,利用谐波平衡原理,给出了一种矩阵形式的磁-机组合振动系统非线性振动谐波平衡解的快速构造方法。最后进行了仿真和样机试验。结果表明,非接触转矩包括稳定转矩和脉动转矩。它们还与机械齿轮相互作用,影响系统振动。内转子的振动幅值对脉动转矩敏感,而磁极片的振动幅值对啮合刚度敏感。稳定转矩和负载的动平衡影响系统的固有频率。与纯机械传动相比,该系统具有“载荷-刚度自适应”特性。所提出的谐波平衡法可以快速计算该特性,为磁性双速变速器的动力学分析和减振提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear magneto-mechanical combined vibration characteristics of magnetic gear two-speed transmission

The replacement of mechanical planetary gears with magnetic gears (MGs) is an emerging transmission solution for electric vehicles that reduce shock and vibration. This article proposes magnetic two-speed transmission and examines the influence of the noncontact torque of MGs, the meshing stiffness of mechanical gears, and the system load on the vibration of magneto-mechanical combined transmission systems. First, the noncontact torque of an MG is analysed on the basis of the magnetic field modulation principle. A set of dynamic equations was subsequently constructed on the basis of the centralized parameter method. Thereafter, with the principle of harmonic balance, a rapid method for constructing a nonlinear vibration harmonic balance solution for a magneto-mechanical combined vibration system in matrix form is obtained. Finally, simulations and prototype tests were conducted. The results show that noncontact torque consists of stable torque and ripple torque. They also interact with mechanical gears to affect system vibration. he vibration amplitude of the inner rotor is sensitive to the pulsating torque, whereas the vibration of the ferromagnetic pole-pieces is sensitive to the meshing stiffness. The stable torque and load dynamic balance affect the natural frequency of the system. The system demonstrates “load‒stiffness adaptive” characteristics compared with those of pure mechanical gearing. The proposed Harmonic Balance Method can quickly calculate this characteristic, and it offers a theoretical basis for dynamic analysis and vibration reduction in magnetic two-speed transmissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Dynamics analysis of the round-wheel compound bow model Multi-state meshing characteristics and global nonlinear dynamics of a spur gear system considering local tooth breakage Dynamic mechanical behavior of ice with different cotton contents On the effect of vertical motion of roll system upon dynamic behavior and stability of rolling mill A simple method for solving damped Duffing oscillators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1