基于LSTM的COVID-19时间序列预测方法

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2024-12-31 DOI:10.1186/s12874-024-02433-w
Bin Hu, Yaohui Han, Wenhui Zhang, Qingyang Zhang, Wen Gu, Jun Bi, Bi Chen, Lishun Xiao
{"title":"基于LSTM的COVID-19时间序列预测方法","authors":"Bin Hu, Yaohui Han, Wenhui Zhang, Qingyang Zhang, Wen Gu, Jun Bi, Bi Chen, Lishun Xiao","doi":"10.1186/s12874-024-02433-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prediction of coronavirus disease in 2019 (COVID-19) in broader regions has been widely researched, but for specific areas such as urban areas the predictive models were rarely studied. It may be inaccurate to apply predictive models from a broad region directly to a small area. This paper builds a prediction approach for small size COVID-19 time series in a city.</p><p><strong>Methods: </strong>Numbers of COVID-19 daily confirmed cases were collected from November 1, 2022 to November 16, 2023 in Xuzhou city of China. Classical deep learning models including recurrent neural network (RNN), long and short-term memory (LSTM), gated recurrent unit (GRU) and temporal convolutional network (TCN) are initially trained, then RNN, LSTM and GRU are integrated with a new attention mechanism and transfer learning to improve the performance. Ten times ablation experiments are conducted to show the robustness of the performance in prediction. The performances among the models are compared by the mean absolute error, root mean square error and coefficient of determination.</p><p><strong>Results: </strong>LSTM outperforms than others, and TCN has the worst generalization ability. Thus, LSTM is integrated with the new attention mechanism to construct an LSTMATT model, which improves the performance. LSTMATT is trained on the smoothed time series curve through frequency domain convolution augmentation, then transfer learning is adopted to transfer the learned features back to the original time series resulting in a TLLA model that further improves the performance. RNN and GRU are also integrated with the attention mechanism and transfer learning and their performances are also improved, but TLLA still performs best.</p><p><strong>Conclusions: </strong>The TLLA model has the best prediction performance for the time series of COVID-19 daily confirmed cases, and the new attention mechanism and transfer learning contribute to improve the prediction performance in the flatten part and the jagged part, respectively.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"323"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686916/pdf/","citationCount":"0","resultStr":"{\"title\":\"A prediction approach to COVID-19 time series with LSTM integrated attention mechanism and transfer learning.\",\"authors\":\"Bin Hu, Yaohui Han, Wenhui Zhang, Qingyang Zhang, Wen Gu, Jun Bi, Bi Chen, Lishun Xiao\",\"doi\":\"10.1186/s12874-024-02433-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The prediction of coronavirus disease in 2019 (COVID-19) in broader regions has been widely researched, but for specific areas such as urban areas the predictive models were rarely studied. It may be inaccurate to apply predictive models from a broad region directly to a small area. This paper builds a prediction approach for small size COVID-19 time series in a city.</p><p><strong>Methods: </strong>Numbers of COVID-19 daily confirmed cases were collected from November 1, 2022 to November 16, 2023 in Xuzhou city of China. Classical deep learning models including recurrent neural network (RNN), long and short-term memory (LSTM), gated recurrent unit (GRU) and temporal convolutional network (TCN) are initially trained, then RNN, LSTM and GRU are integrated with a new attention mechanism and transfer learning to improve the performance. Ten times ablation experiments are conducted to show the robustness of the performance in prediction. The performances among the models are compared by the mean absolute error, root mean square error and coefficient of determination.</p><p><strong>Results: </strong>LSTM outperforms than others, and TCN has the worst generalization ability. Thus, LSTM is integrated with the new attention mechanism to construct an LSTMATT model, which improves the performance. LSTMATT is trained on the smoothed time series curve through frequency domain convolution augmentation, then transfer learning is adopted to transfer the learned features back to the original time series resulting in a TLLA model that further improves the performance. RNN and GRU are also integrated with the attention mechanism and transfer learning and their performances are also improved, but TLLA still performs best.</p><p><strong>Conclusions: </strong>The TLLA model has the best prediction performance for the time series of COVID-19 daily confirmed cases, and the new attention mechanism and transfer learning contribute to improve the prediction performance in the flatten part and the jagged part, respectively.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"24 1\",\"pages\":\"323\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686916/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02433-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02433-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:2019年冠状病毒病(COVID-19)在更大范围内的预测已经得到了广泛的研究,但针对特定区域(如城市地区)的预测模型研究很少。将大区域的预测模型直接应用于小区域可能是不准确的。本文建立了一种城市小尺度COVID-19时间序列的预测方法。方法:收集2022年11月1日至2023年11月16日徐州市每日新冠肺炎确诊病例数。首先对经典深度学习模型包括循环神经网络(RNN)、长短期记忆(LSTM)、门控循环单元(GRU)和时间卷积网络(TCN)进行初步训练,然后将RNN、LSTM和GRU与一种新的注意机制和迁移学习相结合,提高学习性能。进行了10次烧蚀实验,验证了预测结果的稳健性。通过平均绝对误差、均方根误差和决定系数对模型的性能进行了比较。结果:LSTM泛化能力较好,TCN泛化能力最差。因此,将LSTM与新的注意机制相结合,构建LSTMATT模型,提高了性能。通过频域卷积增强在光滑的时间序列曲线上训练LSTMATT,然后采用迁移学习将学习到的特征迁移回原始时间序列,得到TLLA模型,进一步提高了性能。RNN和GRU也集成了注意机制和迁移学习,其性能也得到了提高,但TLLA仍然是最好的。结论:TLLA模型对COVID-19日确诊病例时间序列的预测性能最好,新的注意机制和迁移学习分别有助于提高平坦部分和锯齿部分的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A prediction approach to COVID-19 time series with LSTM integrated attention mechanism and transfer learning.

Background: The prediction of coronavirus disease in 2019 (COVID-19) in broader regions has been widely researched, but for specific areas such as urban areas the predictive models were rarely studied. It may be inaccurate to apply predictive models from a broad region directly to a small area. This paper builds a prediction approach for small size COVID-19 time series in a city.

Methods: Numbers of COVID-19 daily confirmed cases were collected from November 1, 2022 to November 16, 2023 in Xuzhou city of China. Classical deep learning models including recurrent neural network (RNN), long and short-term memory (LSTM), gated recurrent unit (GRU) and temporal convolutional network (TCN) are initially trained, then RNN, LSTM and GRU are integrated with a new attention mechanism and transfer learning to improve the performance. Ten times ablation experiments are conducted to show the robustness of the performance in prediction. The performances among the models are compared by the mean absolute error, root mean square error and coefficient of determination.

Results: LSTM outperforms than others, and TCN has the worst generalization ability. Thus, LSTM is integrated with the new attention mechanism to construct an LSTMATT model, which improves the performance. LSTMATT is trained on the smoothed time series curve through frequency domain convolution augmentation, then transfer learning is adopted to transfer the learned features back to the original time series resulting in a TLLA model that further improves the performance. RNN and GRU are also integrated with the attention mechanism and transfer learning and their performances are also improved, but TLLA still performs best.

Conclusions: The TLLA model has the best prediction performance for the time series of COVID-19 daily confirmed cases, and the new attention mechanism and transfer learning contribute to improve the prediction performance in the flatten part and the jagged part, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
A generative model for evaluating missing data methods in large epidemiological cohorts. Discrepancies in safety reporting for chronic back pain clinical trials: an observational study from ClinicalTrials.gov and publications. Multiple states clustering analysis (MSCA), an unsupervised approach to multiple time-to-event electronic health records applied to multimorbidity associated with myocardial infarction. Matching plus regression adjustment for the estimation of the average treatment effect on survival outcomes: a case study with mosunetuzumab in relapsed/refractory follicular lymphoma. Protocol publication rate and comparison between article, registry and protocol in RCTs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1