医院质量报告中自我报告病例数的内部验证:为卫生服务研究准备二级数据。

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2024-12-31 DOI:10.1186/s12874-024-02429-6
Limei Ji, Max Geraedts, Werner de Cruppé
{"title":"医院质量报告中自我报告病例数的内部验证:为卫生服务研究准备二级数据。","authors":"Limei Ji, Max Geraedts, Werner de Cruppé","doi":"10.1186/s12874-024-02429-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Health services research often relies on secondary data, necessitating quality checks for completeness, validity, and potential errors before use. Various methods address implausible data, including data elimination, statistical estimation, or value substitution from the same or another dataset. This study presents an internal validation process of a secondary dataset used to investigate hospital compliance with minimum caseload requirements (MCR) in Germany. The secondary data source validated is the German Hospital Quality Reports (GHQR), an official dataset containing structured self-reported data from all hospitals in Germany.</p><p><strong>Methods: </strong>This study conducted an internal cross-field validation of MCR-related data in GHQR from 2016 to 2021. The validation process checked the validity of reported MCR caseloads, including data availability and consistency, by comparing the stated MCR caseload with further variables in the GHQR. Subsequently, implausible MCR caseload values were corrected using the most plausible values given in the same GHQR. The study also analysed the error sources and used reimbursement-related Diagnosis Related Groups Statistic data to assess the validation outcomes.</p><p><strong>Results: </strong>The analysis focused on four MCR procedures. 11.8-27.7% of the total MCR caseload values in the GHQR appeared ambiguous, and 7.9-23.7% were corrected. The correction added 0.7-3.7% of cases not previously stated as MCR caseloads and added 1.5-26.1% of hospital sites as MCR performing hospitals not previously stated in the GHQR. The main error source was this non-reporting of MCR caseloads, especially by hospitals with low case numbers. The basic plausibility control implemented by the Federal Joint Committee since 2018 has improved the MCR-related data quality over time.</p><p><strong>Conclusions: </strong>This study employed a comprehensive approach to dataset internal validation that encompassed: (1) hospital association level data, (2) hospital site level data and (3) medical department level data, (4) report data spanning six years, and (5) logical plausibility checks. To ensure data completeness, we selected the most plausible values without eliminating incomplete or implausible data. For future practice, we recommend a validation process when using GHQR as a data source for MCR-related research. Additionally, an adapted plausibility control could help to improve the quality of MCR documentation.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"325"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Internal validation of self-reported case numbers in hospital quality reports: preparing secondary data for health services research.\",\"authors\":\"Limei Ji, Max Geraedts, Werner de Cruppé\",\"doi\":\"10.1186/s12874-024-02429-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Health services research often relies on secondary data, necessitating quality checks for completeness, validity, and potential errors before use. Various methods address implausible data, including data elimination, statistical estimation, or value substitution from the same or another dataset. This study presents an internal validation process of a secondary dataset used to investigate hospital compliance with minimum caseload requirements (MCR) in Germany. The secondary data source validated is the German Hospital Quality Reports (GHQR), an official dataset containing structured self-reported data from all hospitals in Germany.</p><p><strong>Methods: </strong>This study conducted an internal cross-field validation of MCR-related data in GHQR from 2016 to 2021. The validation process checked the validity of reported MCR caseloads, including data availability and consistency, by comparing the stated MCR caseload with further variables in the GHQR. Subsequently, implausible MCR caseload values were corrected using the most plausible values given in the same GHQR. The study also analysed the error sources and used reimbursement-related Diagnosis Related Groups Statistic data to assess the validation outcomes.</p><p><strong>Results: </strong>The analysis focused on four MCR procedures. 11.8-27.7% of the total MCR caseload values in the GHQR appeared ambiguous, and 7.9-23.7% were corrected. The correction added 0.7-3.7% of cases not previously stated as MCR caseloads and added 1.5-26.1% of hospital sites as MCR performing hospitals not previously stated in the GHQR. The main error source was this non-reporting of MCR caseloads, especially by hospitals with low case numbers. The basic plausibility control implemented by the Federal Joint Committee since 2018 has improved the MCR-related data quality over time.</p><p><strong>Conclusions: </strong>This study employed a comprehensive approach to dataset internal validation that encompassed: (1) hospital association level data, (2) hospital site level data and (3) medical department level data, (4) report data spanning six years, and (5) logical plausibility checks. To ensure data completeness, we selected the most plausible values without eliminating incomplete or implausible data. For future practice, we recommend a validation process when using GHQR as a data source for MCR-related research. Additionally, an adapted plausibility control could help to improve the quality of MCR documentation.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"24 1\",\"pages\":\"325\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02429-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02429-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:卫生服务研究通常依赖于二手数据,在使用前需要对完整性、有效性和潜在错误进行质量检查。各种方法处理不可信的数据,包括数据消除、统计估计或来自相同或另一个数据集的值替换。本研究提出了用于调查德国医院遵守最低病例负荷要求(MCR)的二级数据集的内部验证过程。验证的次要数据源是德国医院质量报告(GHQR),这是一个官方数据集,包含来自德国所有医院的结构化自我报告数据。方法:本研究对2016 - 2021年GHQR的mcr相关数据进行了内部跨领域验证。验证过程通过将所述MCR病例量与GHQR中的其他变量进行比较,检查报告的MCR病例量的有效性,包括数据的可用性和一致性。随后,使用同一GHQR中给出的最合理的值来纠正不合理的MCR病例负荷值。本研究还分析了误差来源,并使用报销相关诊断相关组统计数据来评估验证结果。结果:重点分析了4种MCR手术。GHQR中11.8-27.7%的MCR总病例负荷值出现模糊,7.9-23.7%得到纠正。这一修正增加了0.7-3.7%以前未被列为MCR病例量的病例,并增加了1.5-26.1%的医院地点作为执行MCR的医院,这些医院以前未在GHQR中列出。主要的错误来源是没有报告MCR病例量,特别是病例数少的医院。联邦联合委员会自2018年以来实施的基本合理性控制随着时间的推移提高了mcr相关数据的质量。结论:本研究采用了一种综合的数据集内部验证方法,包括:(1)医院协会级别的数据,(2)医院站点级别的数据,(3)医疗部门级别的数据,(4)跨越六年的报告数据,以及(5)逻辑合理性检查。为了确保数据的完整性,我们选择了最可信的值,而不排除不完整或不可信的数据。在未来的实践中,我们建议在使用GHQR作为mcr相关研究的数据源时进行验证过程。此外,适应性的合理性控制可以帮助提高MCR文档的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internal validation of self-reported case numbers in hospital quality reports: preparing secondary data for health services research.

Background: Health services research often relies on secondary data, necessitating quality checks for completeness, validity, and potential errors before use. Various methods address implausible data, including data elimination, statistical estimation, or value substitution from the same or another dataset. This study presents an internal validation process of a secondary dataset used to investigate hospital compliance with minimum caseload requirements (MCR) in Germany. The secondary data source validated is the German Hospital Quality Reports (GHQR), an official dataset containing structured self-reported data from all hospitals in Germany.

Methods: This study conducted an internal cross-field validation of MCR-related data in GHQR from 2016 to 2021. The validation process checked the validity of reported MCR caseloads, including data availability and consistency, by comparing the stated MCR caseload with further variables in the GHQR. Subsequently, implausible MCR caseload values were corrected using the most plausible values given in the same GHQR. The study also analysed the error sources and used reimbursement-related Diagnosis Related Groups Statistic data to assess the validation outcomes.

Results: The analysis focused on four MCR procedures. 11.8-27.7% of the total MCR caseload values in the GHQR appeared ambiguous, and 7.9-23.7% were corrected. The correction added 0.7-3.7% of cases not previously stated as MCR caseloads and added 1.5-26.1% of hospital sites as MCR performing hospitals not previously stated in the GHQR. The main error source was this non-reporting of MCR caseloads, especially by hospitals with low case numbers. The basic plausibility control implemented by the Federal Joint Committee since 2018 has improved the MCR-related data quality over time.

Conclusions: This study employed a comprehensive approach to dataset internal validation that encompassed: (1) hospital association level data, (2) hospital site level data and (3) medical department level data, (4) report data spanning six years, and (5) logical plausibility checks. To ensure data completeness, we selected the most plausible values without eliminating incomplete or implausible data. For future practice, we recommend a validation process when using GHQR as a data source for MCR-related research. Additionally, an adapted plausibility control could help to improve the quality of MCR documentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
A generative model for evaluating missing data methods in large epidemiological cohorts. Discrepancies in safety reporting for chronic back pain clinical trials: an observational study from ClinicalTrials.gov and publications. Multiple states clustering analysis (MSCA), an unsupervised approach to multiple time-to-event electronic health records applied to multimorbidity associated with myocardial infarction. Matching plus regression adjustment for the estimation of the average treatment effect on survival outcomes: a case study with mosunetuzumab in relapsed/refractory follicular lymphoma. Protocol publication rate and comparison between article, registry and protocol in RCTs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1