{"title":"开发全面的BACnet攻击数据集:朝着提高楼宇自动化系统网络安全迈出的一步。","authors":"Seyed Amirhossein Moosavi, Mojtaba Asgari, Seyed Reza Kamel","doi":"10.1016/j.dib.2024.111192","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of smart buildings, the risks of cyber-attacks against them have also increased. One of the popular and evolving protocols used for communication between devices in smart buildings, especially HVAC systems, is the BACnet protocol. Machine learning algorithms and neural networks require datasets of normal traffic and real attacks to develop intrusion detection (IDS) and prevention (IPS) systems that can detect anomalies and prevent attacks. Real traffic datasets for these networks are often unavailable due to confidentiality reasons. To address this, we propose a framework that uses existing real datasets and converts them into BACnet protocol network traffic with detailed network behaviour. In this method, a virtual machine is prepared for each controller based on real scenarios, and by creating a simulator for the controller on the virtual machine, real data previously collected under real conditions from existing datasets is injected into the network with the same date and time during the simulation. We performed three types of attacks, including Falsifying, Modifying, and covert channel attacks on the network. For covert channel attacks, the message was modelled in three forms: Plain text, hashed using SHA3-256, and encrypted using AES-256. Network traffic was recorded using Wireshark software in pcap format. The advantage of the generated dataset is that since we used real data, the data behaviour aligns with real conditions.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111192"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing a comprehensive BACnet attack dataset: A step towards improved cybersecurity in building automation systems.\",\"authors\":\"Seyed Amirhossein Moosavi, Mojtaba Asgari, Seyed Reza Kamel\",\"doi\":\"10.1016/j.dib.2024.111192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the development of smart buildings, the risks of cyber-attacks against them have also increased. One of the popular and evolving protocols used for communication between devices in smart buildings, especially HVAC systems, is the BACnet protocol. Machine learning algorithms and neural networks require datasets of normal traffic and real attacks to develop intrusion detection (IDS) and prevention (IPS) systems that can detect anomalies and prevent attacks. Real traffic datasets for these networks are often unavailable due to confidentiality reasons. To address this, we propose a framework that uses existing real datasets and converts them into BACnet protocol network traffic with detailed network behaviour. In this method, a virtual machine is prepared for each controller based on real scenarios, and by creating a simulator for the controller on the virtual machine, real data previously collected under real conditions from existing datasets is injected into the network with the same date and time during the simulation. We performed three types of attacks, including Falsifying, Modifying, and covert channel attacks on the network. For covert channel attacks, the message was modelled in three forms: Plain text, hashed using SHA3-256, and encrypted using AES-256. Network traffic was recorded using Wireshark software in pcap format. The advantage of the generated dataset is that since we used real data, the data behaviour aligns with real conditions.</p>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"57 \",\"pages\":\"111192\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dib.2024.111192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Developing a comprehensive BACnet attack dataset: A step towards improved cybersecurity in building automation systems.
With the development of smart buildings, the risks of cyber-attacks against them have also increased. One of the popular and evolving protocols used for communication between devices in smart buildings, especially HVAC systems, is the BACnet protocol. Machine learning algorithms and neural networks require datasets of normal traffic and real attacks to develop intrusion detection (IDS) and prevention (IPS) systems that can detect anomalies and prevent attacks. Real traffic datasets for these networks are often unavailable due to confidentiality reasons. To address this, we propose a framework that uses existing real datasets and converts them into BACnet protocol network traffic with detailed network behaviour. In this method, a virtual machine is prepared for each controller based on real scenarios, and by creating a simulator for the controller on the virtual machine, real data previously collected under real conditions from existing datasets is injected into the network with the same date and time during the simulation. We performed three types of attacks, including Falsifying, Modifying, and covert channel attacks on the network. For covert channel attacks, the message was modelled in three forms: Plain text, hashed using SHA3-256, and encrypted using AES-256. Network traffic was recorded using Wireshark software in pcap format. The advantage of the generated dataset is that since we used real data, the data behaviour aligns with real conditions.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.