Dan Liu, Yiqi Mi, Menghan Li, Anna Nigri, Marina Grisoli, Keith M Kendrick, Benjamin Becker, Stefania Ferraro
{"title":"识别慢性疼痛的实时fMRI神经反馈的脑目标:来自功能神经外科的见解。","authors":"Dan Liu, Yiqi Mi, Menghan Li, Anna Nigri, Marina Grisoli, Keith M Kendrick, Benjamin Becker, Stefania Ferraro","doi":"10.1093/psyrad/kkae026","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The lack of clearly defined neuromodulation targets has contributed to the inconsistent results of real-time fMRI-based neurofeedback (rt-fMRI-NF) for the treatment of chronic pain. Functional neurosurgery (funcSurg) approaches have shown more consistent effects in reducing pain in patients with severe chronic pain.</p><p><strong>Objective: </strong>This study aims to redefine rt-fMRI-NF targets for chronic pain management informed by funcSurg studies.</p><p><strong>Methods: </strong>Based on independent systematic reviews, we identified the neuromodulation targets of the rt-fMRI-NF (in acute and chronic pain) and funcSurg (in chronic pain) studies. We then characterized the underlying functional networks using a subsample of the 7 T resting-state fMRI dataset from the Human Connectome Project. Principal component analyses (PCA) were used to identify dominant patterns (accounting for a cumulative explained variance >80%) within the obtained functional maps, and the overlap between these PCA maps and canonical intrinsic brain networks (default, salience, and sensorimotor) was calculated using a null map approach.</p><p><strong>Results: </strong>The anatomical targets used in rt-fMRI-NF and funcSurg approaches are largely distinct, with the middle cingulate cortex as a common target. Within the investigated canonical rs-fMRI networks, these approaches exhibit both divergent and overlapping functional connectivity patterns. Specifically, rt-fMRI-NF approaches primarily target the default mode network (<i>P</i> value range 0.001-0.002) and the salience network (<i>P</i> = 0.002), whereas funcSurg approaches predominantly target the salience network (<i>P</i> = 0.001) and the sensorimotor network (<i>P</i> value range 0.001-0.023).</p><p><strong>Conclusion: </strong>Key hubs of the salience and sensorimotor networks may represent promising targets for the therapeutic application of rt-fMRI-NF in chronic pain.</p>","PeriodicalId":93496,"journal":{"name":"Psychoradiology","volume":"4 ","pages":"kkae026"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683833/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying brain targets for real-time fMRI neurofeedback in chronic pain: insights from functional neurosurgery.\",\"authors\":\"Dan Liu, Yiqi Mi, Menghan Li, Anna Nigri, Marina Grisoli, Keith M Kendrick, Benjamin Becker, Stefania Ferraro\",\"doi\":\"10.1093/psyrad/kkae026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The lack of clearly defined neuromodulation targets has contributed to the inconsistent results of real-time fMRI-based neurofeedback (rt-fMRI-NF) for the treatment of chronic pain. Functional neurosurgery (funcSurg) approaches have shown more consistent effects in reducing pain in patients with severe chronic pain.</p><p><strong>Objective: </strong>This study aims to redefine rt-fMRI-NF targets for chronic pain management informed by funcSurg studies.</p><p><strong>Methods: </strong>Based on independent systematic reviews, we identified the neuromodulation targets of the rt-fMRI-NF (in acute and chronic pain) and funcSurg (in chronic pain) studies. We then characterized the underlying functional networks using a subsample of the 7 T resting-state fMRI dataset from the Human Connectome Project. Principal component analyses (PCA) were used to identify dominant patterns (accounting for a cumulative explained variance >80%) within the obtained functional maps, and the overlap between these PCA maps and canonical intrinsic brain networks (default, salience, and sensorimotor) was calculated using a null map approach.</p><p><strong>Results: </strong>The anatomical targets used in rt-fMRI-NF and funcSurg approaches are largely distinct, with the middle cingulate cortex as a common target. Within the investigated canonical rs-fMRI networks, these approaches exhibit both divergent and overlapping functional connectivity patterns. Specifically, rt-fMRI-NF approaches primarily target the default mode network (<i>P</i> value range 0.001-0.002) and the salience network (<i>P</i> = 0.002), whereas funcSurg approaches predominantly target the salience network (<i>P</i> = 0.001) and the sensorimotor network (<i>P</i> value range 0.001-0.023).</p><p><strong>Conclusion: </strong>Key hubs of the salience and sensorimotor networks may represent promising targets for the therapeutic application of rt-fMRI-NF in chronic pain.</p>\",\"PeriodicalId\":93496,\"journal\":{\"name\":\"Psychoradiology\",\"volume\":\"4 \",\"pages\":\"kkae026\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683833/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychoradiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/psyrad/kkae026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/psyrad/kkae026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying brain targets for real-time fMRI neurofeedback in chronic pain: insights from functional neurosurgery.
Background: The lack of clearly defined neuromodulation targets has contributed to the inconsistent results of real-time fMRI-based neurofeedback (rt-fMRI-NF) for the treatment of chronic pain. Functional neurosurgery (funcSurg) approaches have shown more consistent effects in reducing pain in patients with severe chronic pain.
Objective: This study aims to redefine rt-fMRI-NF targets for chronic pain management informed by funcSurg studies.
Methods: Based on independent systematic reviews, we identified the neuromodulation targets of the rt-fMRI-NF (in acute and chronic pain) and funcSurg (in chronic pain) studies. We then characterized the underlying functional networks using a subsample of the 7 T resting-state fMRI dataset from the Human Connectome Project. Principal component analyses (PCA) were used to identify dominant patterns (accounting for a cumulative explained variance >80%) within the obtained functional maps, and the overlap between these PCA maps and canonical intrinsic brain networks (default, salience, and sensorimotor) was calculated using a null map approach.
Results: The anatomical targets used in rt-fMRI-NF and funcSurg approaches are largely distinct, with the middle cingulate cortex as a common target. Within the investigated canonical rs-fMRI networks, these approaches exhibit both divergent and overlapping functional connectivity patterns. Specifically, rt-fMRI-NF approaches primarily target the default mode network (P value range 0.001-0.002) and the salience network (P = 0.002), whereas funcSurg approaches predominantly target the salience network (P = 0.001) and the sensorimotor network (P value range 0.001-0.023).
Conclusion: Key hubs of the salience and sensorimotor networks may represent promising targets for the therapeutic application of rt-fMRI-NF in chronic pain.