一种核心糖脂疫苗可诱导抗沙门氏菌交叉反应抗体,并保护小鼠免受侵袭性非伤寒沙门氏菌病的侵袭

Scott M Baliban, Surekha Shridhar, Kun Luo, Jacqueline Kolasny, Sang Hyun, Zhiyong Zhao, Sharon M Tennant, Alan S Cross
{"title":"一种核心糖脂疫苗可诱导抗沙门氏菌交叉反应抗体,并保护小鼠免受侵袭性非伤寒沙门氏菌病的侵袭","authors":"Scott M Baliban, Surekha Shridhar, Kun Luo, Jacqueline Kolasny, Sang Hyun, Zhiyong Zhao, Sharon M Tennant, Alan S Cross","doi":"10.1093/infdis/jiae641","DOIUrl":null,"url":null,"abstract":"Background Enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi A in addition to gastroenteritis and invasive disease, predominantly attributable to nontyphoidal Salmonella serovars Typhimurium and Enteritidis, are major causes of death and disability across the globe. A broad-spectrum vaccine that protects against disease caused by typhoidal and nontyphoidal serovars of Salmonella is not available for humans but would prevent a considerable burden of disease worldwide. Methods We previously developed a broad-spectrum vaccine for Gram-negative bacteria that is based on the inner core domain of detoxified Escherichia coli O111, Rc (J5) mutant lipooligosaccharide, a highly conserved antigen across Gram-negative bacteria, complexed with an outer membrane protein of group B Neisseria meningitidis. In this study, mice and rabbits were immunized with the J5 core/outer membrane protein subunit vaccine. We assessed the cross-reactivity of antisera with various Salmonella species lipopolysaccharides and the protective efficacy of passive and active immunization with J5 vaccine against experimental nontyphoidal Salmonella infection in mice. Results Vaccination with J5 induced IgG responses that strongly recognized lipopolysaccharide from both typhoidal and nontyphoidal Salmonella and imparted a survival benefit against lethal heterologous challenges with S. Typhimurium and S. Enteritidis. Additionally, passive transfer studies with rabbit hyperimmune sera raised against the J5 vaccine revealed that anti-core antibodies were protective against lipopolysaccharide challenge in D-galactosamine-sensitized mice. Conclusions Our findings support the development of core glycolipids as a novel Salmonella vaccine candidate. Further investigation is warranted to determine the efficacy of the J5 core/outer membrane protein vaccine against other Salmonella serovars of concern.","PeriodicalId":501010,"journal":{"name":"The Journal of Infectious Diseases","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A core glycolipid vaccine elicits cross-reactive antibodies against Salmonella spp. and protects against invasive nontyphoidal Salmonella disease in mice\",\"authors\":\"Scott M Baliban, Surekha Shridhar, Kun Luo, Jacqueline Kolasny, Sang Hyun, Zhiyong Zhao, Sharon M Tennant, Alan S Cross\",\"doi\":\"10.1093/infdis/jiae641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi A in addition to gastroenteritis and invasive disease, predominantly attributable to nontyphoidal Salmonella serovars Typhimurium and Enteritidis, are major causes of death and disability across the globe. A broad-spectrum vaccine that protects against disease caused by typhoidal and nontyphoidal serovars of Salmonella is not available for humans but would prevent a considerable burden of disease worldwide. Methods We previously developed a broad-spectrum vaccine for Gram-negative bacteria that is based on the inner core domain of detoxified Escherichia coli O111, Rc (J5) mutant lipooligosaccharide, a highly conserved antigen across Gram-negative bacteria, complexed with an outer membrane protein of group B Neisseria meningitidis. In this study, mice and rabbits were immunized with the J5 core/outer membrane protein subunit vaccine. We assessed the cross-reactivity of antisera with various Salmonella species lipopolysaccharides and the protective efficacy of passive and active immunization with J5 vaccine against experimental nontyphoidal Salmonella infection in mice. Results Vaccination with J5 induced IgG responses that strongly recognized lipopolysaccharide from both typhoidal and nontyphoidal Salmonella and imparted a survival benefit against lethal heterologous challenges with S. Typhimurium and S. Enteritidis. Additionally, passive transfer studies with rabbit hyperimmune sera raised against the J5 vaccine revealed that anti-core antibodies were protective against lipopolysaccharide challenge in D-galactosamine-sensitized mice. Conclusions Our findings support the development of core glycolipids as a novel Salmonella vaccine candidate. Further investigation is warranted to determine the efficacy of the J5 core/outer membrane protein vaccine against other Salmonella serovars of concern.\",\"PeriodicalId\":501010,\"journal\":{\"name\":\"The Journal of Infectious Diseases\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Infectious Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/infdis/jiae641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/infdis/jiae641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:除肠胃炎和侵袭性疾病外,主要由非伤寒沙门氏菌伤寒和肠炎引起的伤寒沙门氏菌血清型和副伤寒沙门氏菌引起的肠热是全球死亡和残疾的主要原因。一种广谱疫苗可以预防由伤寒和非伤寒沙门氏菌血清型引起的疾病,目前尚无法用于人类,但可以在世界范围内预防相当大的疾病负担。我们先前开发了一种广谱革兰氏阴性菌疫苗,该疫苗基于解毒大肠杆菌O111, Rc (J5)突变型脂寡糖的内核结构域,这是一种在革兰氏阴性菌中高度保守的抗原,与B群脑膜炎奈瑟菌的外膜蛋白络合。本研究采用J5核心/外膜蛋白亚单位疫苗免疫小鼠和家兔。研究了抗血清与多种沙门菌脂多糖的交叉反应性,以及J5疫苗被动免疫和主动免疫对小鼠实验性非伤寒沙门菌感染的保护作用。结果接种J5诱导的IgG应答能强烈识别伤寒沙门氏菌和非伤寒沙门氏菌的脂多糖,并对鼠伤寒沙门氏菌和肠炎沙门氏菌的致死性异源攻击具有生存优势。此外,J5疫苗兔超免疫血清的被动转移研究显示,抗核心抗体对d -半乳糖胺致敏小鼠的脂多糖攻击具有保护作用。结论本研究结果支持核心糖脂作为沙门氏菌新型候选疫苗的发展。需要进一步研究以确定J5核心/外膜蛋白疫苗对其他关注的沙门氏菌血清型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A core glycolipid vaccine elicits cross-reactive antibodies against Salmonella spp. and protects against invasive nontyphoidal Salmonella disease in mice
Background Enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi A in addition to gastroenteritis and invasive disease, predominantly attributable to nontyphoidal Salmonella serovars Typhimurium and Enteritidis, are major causes of death and disability across the globe. A broad-spectrum vaccine that protects against disease caused by typhoidal and nontyphoidal serovars of Salmonella is not available for humans but would prevent a considerable burden of disease worldwide. Methods We previously developed a broad-spectrum vaccine for Gram-negative bacteria that is based on the inner core domain of detoxified Escherichia coli O111, Rc (J5) mutant lipooligosaccharide, a highly conserved antigen across Gram-negative bacteria, complexed with an outer membrane protein of group B Neisseria meningitidis. In this study, mice and rabbits were immunized with the J5 core/outer membrane protein subunit vaccine. We assessed the cross-reactivity of antisera with various Salmonella species lipopolysaccharides and the protective efficacy of passive and active immunization with J5 vaccine against experimental nontyphoidal Salmonella infection in mice. Results Vaccination with J5 induced IgG responses that strongly recognized lipopolysaccharide from both typhoidal and nontyphoidal Salmonella and imparted a survival benefit against lethal heterologous challenges with S. Typhimurium and S. Enteritidis. Additionally, passive transfer studies with rabbit hyperimmune sera raised against the J5 vaccine revealed that anti-core antibodies were protective against lipopolysaccharide challenge in D-galactosamine-sensitized mice. Conclusions Our findings support the development of core glycolipids as a novel Salmonella vaccine candidate. Further investigation is warranted to determine the efficacy of the J5 core/outer membrane protein vaccine against other Salmonella serovars of concern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of attaining an aggressive PK/PD target with continuous infusion beta-lactams on the clinical efficacy of targeted therapy of early post-transplant Gram-negative infections in critically ill OLT recipients. An interim analysis of a 3-year prospective, observational, study Antibody-Based Antigen Delivery to Dendritic Cells as a Vaccination Strategy Against Ebola Virus Disease The Current and Future Burden of Long COVID in the United States (U.S.) Looking Forward: The Journal of Infectious Diseases in 2025. Interleukin-6 is significantly increased in severe pneumonia after allo-HSCT and might induce lung injury via IL-6/sIL-6R/JAK1/STAT3 pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1