水稻改良过程中插入/缺失变异的基因组模式。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2024-12-31 DOI:10.1186/s12864-024-11178-1
Xia Zhou, Jilong Li, Lei Chen, Minjie Guo, Renmin Liang, Yinghua Pan
{"title":"水稻改良过程中插入/缺失变异的基因组模式。","authors":"Xia Zhou, Jilong Li, Lei Chen, Minjie Guo, Renmin Liang, Yinghua Pan","doi":"10.1186/s12864-024-11178-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.</p><p><strong>Results: </strong>In this study, we extracted INDELs from resequencing data of 148 rice improved varieties. We identified 938,585 INDELs and found that as the length of the variation increases, the number of variations decreases, with 89.0% of INDELs being 2-10 bp. The highest number of INDELs was found on chromosome 1, while the least was on chromosome 10. INDELs were unevenly distributed across the genome, generating a total of 33 hotspot regions. 47.0% of INDELs were located within 2 kb upstream and downstream of genes. Using phenotypic data from five agronomic traits (heading date, flag leaf length, flag leaf width, panicle number, and plant height) along with INDEL data to perform genome-wide association study (GWAS), we identified 6,331 significant loci involving 157 cloned genes. Haplotype analysis of candidate genes revealed INDELs affecting important functional genes, such as OsMED25 and OsRRMh related to heading date, and MOC2 related to plant height.</p><p><strong>Conclusions: </strong>Our work analyzed the variation patterns of INDELs in rice improvement and identified INDELs associated with agronomic traits. These results will provide valuable genetic and material resources for the genetic improvement of rice.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1263"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686897/pdf/","citationCount":"0","resultStr":"{\"title\":\"The genomic pattern of insertion/deletion variations during rice improvement.\",\"authors\":\"Xia Zhou, Jilong Li, Lei Chen, Minjie Guo, Renmin Liang, Yinghua Pan\",\"doi\":\"10.1186/s12864-024-11178-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.</p><p><strong>Results: </strong>In this study, we extracted INDELs from resequencing data of 148 rice improved varieties. We identified 938,585 INDELs and found that as the length of the variation increases, the number of variations decreases, with 89.0% of INDELs being 2-10 bp. The highest number of INDELs was found on chromosome 1, while the least was on chromosome 10. INDELs were unevenly distributed across the genome, generating a total of 33 hotspot regions. 47.0% of INDELs were located within 2 kb upstream and downstream of genes. Using phenotypic data from five agronomic traits (heading date, flag leaf length, flag leaf width, panicle number, and plant height) along with INDEL data to perform genome-wide association study (GWAS), we identified 6,331 significant loci involving 157 cloned genes. Haplotype analysis of candidate genes revealed INDELs affecting important functional genes, such as OsMED25 and OsRRMh related to heading date, and MOC2 related to plant height.</p><p><strong>Conclusions: </strong>Our work analyzed the variation patterns of INDELs in rice improvement and identified INDELs associated with agronomic traits. These results will provide valuable genetic and material resources for the genetic improvement of rice.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"25 1\",\"pages\":\"1263\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-024-11178-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11178-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The genomic pattern of insertion/deletion variations during rice improvement.

Background: Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.

Results: In this study, we extracted INDELs from resequencing data of 148 rice improved varieties. We identified 938,585 INDELs and found that as the length of the variation increases, the number of variations decreases, with 89.0% of INDELs being 2-10 bp. The highest number of INDELs was found on chromosome 1, while the least was on chromosome 10. INDELs were unevenly distributed across the genome, generating a total of 33 hotspot regions. 47.0% of INDELs were located within 2 kb upstream and downstream of genes. Using phenotypic data from five agronomic traits (heading date, flag leaf length, flag leaf width, panicle number, and plant height) along with INDEL data to perform genome-wide association study (GWAS), we identified 6,331 significant loci involving 157 cloned genes. Haplotype analysis of candidate genes revealed INDELs affecting important functional genes, such as OsMED25 and OsRRMh related to heading date, and MOC2 related to plant height.

Conclusions: Our work analyzed the variation patterns of INDELs in rice improvement and identified INDELs associated with agronomic traits. These results will provide valuable genetic and material resources for the genetic improvement of rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Genomic strategies to facilitate breeding for increased β-Glucan content in oat (Avena sativa L.). Characterization of chemosensory genes in the subterranean pest Gryllotalpa Orientalis based on genome assembly and transcriptome comparison. Comparative analysis of the whole transcriptome landscapes of muscle and adipose tissue in Qinchuan beef cattle. Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat. Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1