脑默认模式网络的功能磁共振分析进展综述。

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Brain Structure & Function Pub Date : 2024-12-30 DOI:10.1007/s00429-024-02888-z
Emilio Sanz-Morales, Helena Melero
{"title":"脑默认模式网络的功能磁共振分析进展综述。","authors":"Emilio Sanz-Morales, Helena Melero","doi":"10.1007/s00429-024-02888-z","DOIUrl":null,"url":null,"abstract":"<p><p>The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions. Interestingly, the study of its temporal characteristics - the specific frequency spectrum of BOLD signal oscillations -, its developmental trajectory over the course of life, and its interaction with other networks, provides new insight into the DMN's defining features. In this context, this review aims to synthesize the state of the art in the study of the DMN to provide the most updated findings to anyone interested in its research. Finally, some weaknesses in the current state of knowledge and some interesting lines of work for further progress in the study of the DMN are presented.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"22"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in the fMRI analysis of the default mode network: a review.\",\"authors\":\"Emilio Sanz-Morales, Helena Melero\",\"doi\":\"10.1007/s00429-024-02888-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions. Interestingly, the study of its temporal characteristics - the specific frequency spectrum of BOLD signal oscillations -, its developmental trajectory over the course of life, and its interaction with other networks, provides new insight into the DMN's defining features. In this context, this review aims to synthesize the state of the art in the study of the DMN to provide the most updated findings to anyone interested in its research. Finally, some weaknesses in the current state of knowledge and some interesting lines of work for further progress in the study of the DMN are presented.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 1\",\"pages\":\"22\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02888-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02888-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

默认模式网络(DMN)是大脑区域之间的单一同步模式,通常使用静息状态功能磁共振成像(rs-fMRI)和功能连接分析来观察。与其他主要参与注意力要求任务的大脑网络(如额顶叶网络)相比,DMN与自我参照活动有关,其连接模式的改变与广泛的疾病有关。结构连接分析强调了后扣带皮层和楔前叶作为综合中枢的重要作用,先进的包裹方法进一步阐明了DMN的区域,丰富了其在认知功能和功能障碍方面的解释潜力。有趣的是,对其时间特征(BOLD信号振荡的特定频谱)、其在生命过程中的发展轨迹以及与其他网络的相互作用的研究,为DMN的定义特征提供了新的见解。在此背景下,本综述旨在综合DMN研究的最新进展,为任何对其研究感兴趣的人提供最新的发现。最后,提出了当前知识状态下的一些弱点和DMN研究的一些有趣的工作方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in the fMRI analysis of the default mode network: a review.

The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions. Interestingly, the study of its temporal characteristics - the specific frequency spectrum of BOLD signal oscillations -, its developmental trajectory over the course of life, and its interaction with other networks, provides new insight into the DMN's defining features. In this context, this review aims to synthesize the state of the art in the study of the DMN to provide the most updated findings to anyone interested in its research. Finally, some weaknesses in the current state of knowledge and some interesting lines of work for further progress in the study of the DMN are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
期刊最新文献
Decreases in frequency-dependent intrinsic activity of the default mode network are associated with depression and cognition in patients with postacute sequelae of SARS-CoV-2 infection. rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area. Enlargement of the human prefrontal cortex and brain mentalizing network: anatomically homogenous cross-species brain transformation. The expression of transcription factors in the human fetal subthalamic nucleus suggests its origin from the first hypothalamic prosomere. ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1