Fabian Laumer, Lena Rubi, Michael A Matter, Stefano Buoso, Gabriel Fringeli, François Mach, Frank Ruschitzka, Joachim M Buhmann, Christian M Matter
{"title":"二维超声心动图视频对三维心脏形态重建的临床应用。","authors":"Fabian Laumer, Lena Rubi, Michael A Matter, Stefano Buoso, Gabriel Fringeli, François Mach, Frank Ruschitzka, Joachim M Buhmann, Christian M Matter","doi":"10.1016/j.media.2024.103434","DOIUrl":null,"url":null,"abstract":"<p><p>Transthoracic Echocardiography (TTE) is a crucial tool for assessing cardiac morphology and function quickly and non-invasively without ionising radiation. However, the examination is subject to intra- and inter-user variability and recordings are often limited to 2D imaging and assessments of end-diastolic and end-systolic volumes. We have developed a novel, fully automated machine learning-based framework to generate a personalised 4D (3D plus time) model of the left ventricular (LV) blood pool with high temporal resolution. A 4D shape is reconstructed from specific 2D echocardiographic views employing deep neural networks, pretrained on a synthetic dataset, and fine-tuned in a self-supervised manner using a novel optimisation method for cross-sectional imaging data. No 3D ground truth is needed for model training. The generated digital twins enhance the interpretation of TTE data by providing a versatile tool for automated analysis of LV volume changes, localisation of infarct areas, and identification of new and clinically relevant biomarkers. Experiments are performed on a multicentre dataset that includes TTE exams of 144 patients with normal TTE and 314 patients with acute myocardial infarction (AMI). The novel biomarkers show a high predictive value for survival (area under the curve (AUC) of 0.82 for 1-year all-cause mortality), demonstrating that personalised 3D shape modelling has the potential to improve diagnostic accuracy and risk assessment.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103434"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D echocardiography video to 3D heart shape reconstruction for clinical application.\",\"authors\":\"Fabian Laumer, Lena Rubi, Michael A Matter, Stefano Buoso, Gabriel Fringeli, François Mach, Frank Ruschitzka, Joachim M Buhmann, Christian M Matter\",\"doi\":\"10.1016/j.media.2024.103434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transthoracic Echocardiography (TTE) is a crucial tool for assessing cardiac morphology and function quickly and non-invasively without ionising radiation. However, the examination is subject to intra- and inter-user variability and recordings are often limited to 2D imaging and assessments of end-diastolic and end-systolic volumes. We have developed a novel, fully automated machine learning-based framework to generate a personalised 4D (3D plus time) model of the left ventricular (LV) blood pool with high temporal resolution. A 4D shape is reconstructed from specific 2D echocardiographic views employing deep neural networks, pretrained on a synthetic dataset, and fine-tuned in a self-supervised manner using a novel optimisation method for cross-sectional imaging data. No 3D ground truth is needed for model training. The generated digital twins enhance the interpretation of TTE data by providing a versatile tool for automated analysis of LV volume changes, localisation of infarct areas, and identification of new and clinically relevant biomarkers. Experiments are performed on a multicentre dataset that includes TTE exams of 144 patients with normal TTE and 314 patients with acute myocardial infarction (AMI). The novel biomarkers show a high predictive value for survival (area under the curve (AUC) of 0.82 for 1-year all-cause mortality), demonstrating that personalised 3D shape modelling has the potential to improve diagnostic accuracy and risk assessment.</p>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"101 \",\"pages\":\"103434\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2024.103434\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103434","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
2D echocardiography video to 3D heart shape reconstruction for clinical application.
Transthoracic Echocardiography (TTE) is a crucial tool for assessing cardiac morphology and function quickly and non-invasively without ionising radiation. However, the examination is subject to intra- and inter-user variability and recordings are often limited to 2D imaging and assessments of end-diastolic and end-systolic volumes. We have developed a novel, fully automated machine learning-based framework to generate a personalised 4D (3D plus time) model of the left ventricular (LV) blood pool with high temporal resolution. A 4D shape is reconstructed from specific 2D echocardiographic views employing deep neural networks, pretrained on a synthetic dataset, and fine-tuned in a self-supervised manner using a novel optimisation method for cross-sectional imaging data. No 3D ground truth is needed for model training. The generated digital twins enhance the interpretation of TTE data by providing a versatile tool for automated analysis of LV volume changes, localisation of infarct areas, and identification of new and clinically relevant biomarkers. Experiments are performed on a multicentre dataset that includes TTE exams of 144 patients with normal TTE and 314 patients with acute myocardial infarction (AMI). The novel biomarkers show a high predictive value for survival (area under the curve (AUC) of 0.82 for 1-year all-cause mortality), demonstrating that personalised 3D shape modelling has the potential to improve diagnostic accuracy and risk assessment.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.