{"title":"通过概念解释来理解设计的整体方法","authors":"Hongzhou Fang;Yuanfang Cai;Ewan Tempero;Rick Kazman;Yu-Cheng Tu;Jason Lefever;Ernst Pisch","doi":"10.1109/TSE.2024.3522973","DOIUrl":null,"url":null,"abstract":"Complex software systems consist of multiple overlapping design structures, such as abstractions, features, crosscutting concerns, or patterns. This is similar to how a human body has multiple interacting subsystems, such as respiratory, digestive, or circulatory. Unlike in the medical domain, software designers do not have an effective way to distinguish, visualize, comprehend, and analyze these interleaving design structures. As a result, developers often struggle through the maze of source code. In this paper, we present an <italic>Automated Concept Explanation</i> (ACE) framework that automatically extracts and categorizes major concepts from source code based on the roles that files play in design structures and their topic frequencies. Based on these categorized concepts, ACE recovers four categories of high-level design models using different algorithms and generates a natural language explanation for each. To assess if and how ACE can help developers better understand design structures, we conducted an empirical study where two groups of graduate students were assigned three design comprehension tasks: identifying feature-related files, identifying dependencies among features, and identifying design patterns used, in an open-source project. The results reveal that the students who used ACE can accomplish these tasks much faster and more accurately, and they acknowledged the usefulness of the categorized concepts and structures, multi-type high-level model visualization, and natural language explanations.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 2","pages":"449-465"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Holistic Approach to Design Understanding Through Concept Explanation\",\"authors\":\"Hongzhou Fang;Yuanfang Cai;Ewan Tempero;Rick Kazman;Yu-Cheng Tu;Jason Lefever;Ernst Pisch\",\"doi\":\"10.1109/TSE.2024.3522973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex software systems consist of multiple overlapping design structures, such as abstractions, features, crosscutting concerns, or patterns. This is similar to how a human body has multiple interacting subsystems, such as respiratory, digestive, or circulatory. Unlike in the medical domain, software designers do not have an effective way to distinguish, visualize, comprehend, and analyze these interleaving design structures. As a result, developers often struggle through the maze of source code. In this paper, we present an <italic>Automated Concept Explanation</i> (ACE) framework that automatically extracts and categorizes major concepts from source code based on the roles that files play in design structures and their topic frequencies. Based on these categorized concepts, ACE recovers four categories of high-level design models using different algorithms and generates a natural language explanation for each. To assess if and how ACE can help developers better understand design structures, we conducted an empirical study where two groups of graduate students were assigned three design comprehension tasks: identifying feature-related files, identifying dependencies among features, and identifying design patterns used, in an open-source project. The results reveal that the students who used ACE can accomplish these tasks much faster and more accurately, and they acknowledged the usefulness of the categorized concepts and structures, multi-type high-level model visualization, and natural language explanations.\",\"PeriodicalId\":13324,\"journal\":{\"name\":\"IEEE Transactions on Software Engineering\",\"volume\":\"51 2\",\"pages\":\"449-465\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820019/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820019/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Holistic Approach to Design Understanding Through Concept Explanation
Complex software systems consist of multiple overlapping design structures, such as abstractions, features, crosscutting concerns, or patterns. This is similar to how a human body has multiple interacting subsystems, such as respiratory, digestive, or circulatory. Unlike in the medical domain, software designers do not have an effective way to distinguish, visualize, comprehend, and analyze these interleaving design structures. As a result, developers often struggle through the maze of source code. In this paper, we present an Automated Concept Explanation (ACE) framework that automatically extracts and categorizes major concepts from source code based on the roles that files play in design structures and their topic frequencies. Based on these categorized concepts, ACE recovers four categories of high-level design models using different algorithms and generates a natural language explanation for each. To assess if and how ACE can help developers better understand design structures, we conducted an empirical study where two groups of graduate students were assigned three design comprehension tasks: identifying feature-related files, identifying dependencies among features, and identifying design patterns used, in an open-source project. The results reveal that the students who used ACE can accomplish these tasks much faster and more accurately, and they acknowledged the usefulness of the categorized concepts and structures, multi-type high-level model visualization, and natural language explanations.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.