通过概念解释来理解设计的整体方法

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Software Engineering Pub Date : 2025-01-01 DOI:10.1109/TSE.2024.3522973
Hongzhou Fang;Yuanfang Cai;Ewan Tempero;Rick Kazman;Yu-Cheng Tu;Jason Lefever;Ernst Pisch
{"title":"通过概念解释来理解设计的整体方法","authors":"Hongzhou Fang;Yuanfang Cai;Ewan Tempero;Rick Kazman;Yu-Cheng Tu;Jason Lefever;Ernst Pisch","doi":"10.1109/TSE.2024.3522973","DOIUrl":null,"url":null,"abstract":"Complex software systems consist of multiple overlapping design structures, such as abstractions, features, crosscutting concerns, or patterns. This is similar to how a human body has multiple interacting subsystems, such as respiratory, digestive, or circulatory. Unlike in the medical domain, software designers do not have an effective way to distinguish, visualize, comprehend, and analyze these interleaving design structures. As a result, developers often struggle through the maze of source code. In this paper, we present an <italic>Automated Concept Explanation</i> (ACE) framework that automatically extracts and categorizes major concepts from source code based on the roles that files play in design structures and their topic frequencies. Based on these categorized concepts, ACE recovers four categories of high-level design models using different algorithms and generates a natural language explanation for each. To assess if and how ACE can help developers better understand design structures, we conducted an empirical study where two groups of graduate students were assigned three design comprehension tasks: identifying feature-related files, identifying dependencies among features, and identifying design patterns used, in an open-source project. The results reveal that the students who used ACE can accomplish these tasks much faster and more accurately, and they acknowledged the usefulness of the categorized concepts and structures, multi-type high-level model visualization, and natural language explanations.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 2","pages":"449-465"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Holistic Approach to Design Understanding Through Concept Explanation\",\"authors\":\"Hongzhou Fang;Yuanfang Cai;Ewan Tempero;Rick Kazman;Yu-Cheng Tu;Jason Lefever;Ernst Pisch\",\"doi\":\"10.1109/TSE.2024.3522973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex software systems consist of multiple overlapping design structures, such as abstractions, features, crosscutting concerns, or patterns. This is similar to how a human body has multiple interacting subsystems, such as respiratory, digestive, or circulatory. Unlike in the medical domain, software designers do not have an effective way to distinguish, visualize, comprehend, and analyze these interleaving design structures. As a result, developers often struggle through the maze of source code. In this paper, we present an <italic>Automated Concept Explanation</i> (ACE) framework that automatically extracts and categorizes major concepts from source code based on the roles that files play in design structures and their topic frequencies. Based on these categorized concepts, ACE recovers four categories of high-level design models using different algorithms and generates a natural language explanation for each. To assess if and how ACE can help developers better understand design structures, we conducted an empirical study where two groups of graduate students were assigned three design comprehension tasks: identifying feature-related files, identifying dependencies among features, and identifying design patterns used, in an open-source project. The results reveal that the students who used ACE can accomplish these tasks much faster and more accurately, and they acknowledged the usefulness of the categorized concepts and structures, multi-type high-level model visualization, and natural language explanations.\",\"PeriodicalId\":13324,\"journal\":{\"name\":\"IEEE Transactions on Software Engineering\",\"volume\":\"51 2\",\"pages\":\"449-465\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820019/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820019/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Holistic Approach to Design Understanding Through Concept Explanation
Complex software systems consist of multiple overlapping design structures, such as abstractions, features, crosscutting concerns, or patterns. This is similar to how a human body has multiple interacting subsystems, such as respiratory, digestive, or circulatory. Unlike in the medical domain, software designers do not have an effective way to distinguish, visualize, comprehend, and analyze these interleaving design structures. As a result, developers often struggle through the maze of source code. In this paper, we present an Automated Concept Explanation (ACE) framework that automatically extracts and categorizes major concepts from source code based on the roles that files play in design structures and their topic frequencies. Based on these categorized concepts, ACE recovers four categories of high-level design models using different algorithms and generates a natural language explanation for each. To assess if and how ACE can help developers better understand design structures, we conducted an empirical study where two groups of graduate students were assigned three design comprehension tasks: identifying feature-related files, identifying dependencies among features, and identifying design patterns used, in an open-source project. The results reveal that the students who used ACE can accomplish these tasks much faster and more accurately, and they acknowledged the usefulness of the categorized concepts and structures, multi-type high-level model visualization, and natural language explanations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Software Engineering
IEEE Transactions on Software Engineering 工程技术-工程:电子与电气
CiteScore
9.70
自引率
10.80%
发文量
724
审稿时长
6 months
期刊介绍: IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include: a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models. b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects. c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards. d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues. e) System issues: Hardware-software trade-offs. f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.
期刊最新文献
SmartUpdater: Enabling Transparent, Automated, and Secure Maintenance of Stateful Smart Contracts SecureFalcon: Are We There Yet in Automated Software Vulnerability Detection with LLMs? Improving Retrieval-Augmented Deep Assertion Generation via Joint Training Robotic Visual GUI Testing for Truly Non-Intrusive Test Automation of Touch Screen Applications Automated co-evolution of metamodels and code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1