广义Lanczos信赖域方法在信赖域子问题上的收敛性

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2025-01-02 DOI:10.1007/s10444-024-10217-5
Bo Feng, Gang Wu
{"title":"广义Lanczos信赖域方法在信赖域子问题上的收敛性","authors":"Bo Feng,&nbsp;Gang Wu","doi":"10.1007/s10444-024-10217-5","DOIUrl":null,"url":null,"abstract":"<div><p>The generalized Lanczos trust-region (GLTR) method is one of the most popular approaches for solving large-scale trust-region subproblem (TRS). In Jia and Wang, <i>SIAM J. Optim., 31, 887–914</i> 2021. Z. Jia et al. considered the convergence of this method and established some <i>a priori</i> error bounds on the residual and the Lagrange multiplier. In this paper, we revisit the convergence of the GLTR method and try to improve these bounds. First, we establish a sharper upper bound on the residual. Second, we present a <i>non-asymptotic</i> bound for the convergence of the Lagrange multiplier and define a factor that plays an important role in the convergence of the Lagrange multiplier. Third, we revisit the convergence of the Krylov subspace method for the cubic regularization variant of the trust-region subproblem and substantially improve the convergence result established in Jia et al., <i>SIAM J. Matrix Anal. Appl. 43 (2022), pp. 812–839</i> 2022 on the multiplier. Numerical experiments demonstrate the effectiveness of our theoretical results.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On convergence of the generalized Lanczos trust-region method for trust-region subproblems\",\"authors\":\"Bo Feng,&nbsp;Gang Wu\",\"doi\":\"10.1007/s10444-024-10217-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generalized Lanczos trust-region (GLTR) method is one of the most popular approaches for solving large-scale trust-region subproblem (TRS). In Jia and Wang, <i>SIAM J. Optim., 31, 887–914</i> 2021. Z. Jia et al. considered the convergence of this method and established some <i>a priori</i> error bounds on the residual and the Lagrange multiplier. In this paper, we revisit the convergence of the GLTR method and try to improve these bounds. First, we establish a sharper upper bound on the residual. Second, we present a <i>non-asymptotic</i> bound for the convergence of the Lagrange multiplier and define a factor that plays an important role in the convergence of the Lagrange multiplier. Third, we revisit the convergence of the Krylov subspace method for the cubic regularization variant of the trust-region subproblem and substantially improve the convergence result established in Jia et al., <i>SIAM J. Matrix Anal. Appl. 43 (2022), pp. 812–839</i> 2022 on the multiplier. Numerical experiments demonstrate the effectiveness of our theoretical results.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10217-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10217-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

广义Lanczos信任域(GLTR)方法是求解大规模信任域子问题(TRS)最常用的方法之一。在贾和王,SIAM J.优化。中华医学杂志,31,887-914 2021。Z. Jia等人考虑了该方法的收敛性,在残差和拉格朗日乘子上建立了一些先验误差界。在本文中,我们重新审视了GLTR方法的收敛性,并尝试改进这些边界。首先,我们在残差上建立一个更清晰的上界。其次,给出了拉格朗日乘子收敛的非渐近界,并定义了一个在拉格朗日乘子收敛中起重要作用的因子。第三,我们重新审视了信赖域子问题三次正则化变体的Krylov子空间方法的收敛性,并大大改进了Jia et al., SIAM J. Matrix Anal中建立的收敛结果。应用程序43 (2022),pp. 812-839关于乘数2022。数值实验证明了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On convergence of the generalized Lanczos trust-region method for trust-region subproblems

The generalized Lanczos trust-region (GLTR) method is one of the most popular approaches for solving large-scale trust-region subproblem (TRS). In Jia and Wang, SIAM J. Optim., 31, 887–914 2021. Z. Jia et al. considered the convergence of this method and established some a priori error bounds on the residual and the Lagrange multiplier. In this paper, we revisit the convergence of the GLTR method and try to improve these bounds. First, we establish a sharper upper bound on the residual. Second, we present a non-asymptotic bound for the convergence of the Lagrange multiplier and define a factor that plays an important role in the convergence of the Lagrange multiplier. Third, we revisit the convergence of the Krylov subspace method for the cubic regularization variant of the trust-region subproblem and substantially improve the convergence result established in Jia et al., SIAM J. Matrix Anal. Appl. 43 (2022), pp. 812–839 2022 on the multiplier. Numerical experiments demonstrate the effectiveness of our theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
A difference finite element method based on nonconforming finite element methods for 3D elliptic problems An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform On convergence of the generalized Lanczos trust-region method for trust-region subproblems Unfitted finite element method for the quad-curl interface problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1