Tobias Long, Robert Barnett, Richard Jefferson-Loveday, Giovanni Stabile, Matteo Icardi
{"title":"基于Radon累积分布变换的平流占优问题降阶模型","authors":"Tobias Long, Robert Barnett, Richard Jefferson-Loveday, Giovanni Stabile, Matteo Icardi","doi":"10.1007/s10444-024-10209-5","DOIUrl":null,"url":null,"abstract":"<div><p>Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform\",\"authors\":\"Tobias Long, Robert Barnett, Richard Jefferson-Loveday, Giovanni Stabile, Matteo Icardi\",\"doi\":\"10.1007/s10444-024-10209-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10209-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10209-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform
Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.