{"title":"脓毒症所致血小板减少症中巨噬细胞异常极化通过BTK/Rap1/NF-κB通路导致巨核生成受损","authors":"Ziyan Zhang, Meng Zhou, Yaqiong Tang, Jiaqian Qi, Xiaoyan Xu, Peng Wang, Haohao Han, Tingting Pan, Xiaofei Song, Shuhui Jiang, Xueqian Li, Chengyuan Gu, Zhenzhen Yao, Qixiu Hou, Mengting Guo, Siyi Lu, Depei Wu, Yue Han","doi":"10.1016/j.ymthe.2024.12.048","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-induced thrombocytopenia (SIT) is a widely accepted predictor of poor prognosis during sepsis, while the mechanism of SIT remains elusive. In this study, we revealed that SIT patients and septic mice exhibited higher levels of pro-inflammatory macrophages and phosphorylated Bruton's tyrosine kinase (p-BTK) expression in macrophages, which were closely correlated with platelet counts. Treatment with the BTK inhibitor BGB-3111 in SIT mice resulted in enhanced production of megakaryocytes and platelets. Depletion of macrophages in SIT mice and coculture experiments further confirmed the critical role of macrophages in the improvement of platelet count induced by BGB-3111. By performing single-cell RNA sequencing on bone marrow-derived cells from SIT mice, we not only confirmed the connection between macrophages and megakaryocytes influenced by BTK but also identified a potential mediation through the Rap1 signaling pathway in macrophages. Subsequent experiments in macrophages demonstrated that inhibition of BTK signaling impeded the pro-inflammatory polarization of macrophages by targeting the Rap1/NF-κB signaling pathway. In conclusion, our study highlights the crucial role of macrophages in SIT, and inhibiting phosphorylation of BTK in macrophages may alleviate SIT through the Rap1/NF-κB signaling pathway.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired megakaryopoiesis due to aberrant macrophage polarization via BTK/Rap1/NF-κB pathway in sepsis-induced thrombocytopenia.\",\"authors\":\"Ziyan Zhang, Meng Zhou, Yaqiong Tang, Jiaqian Qi, Xiaoyan Xu, Peng Wang, Haohao Han, Tingting Pan, Xiaofei Song, Shuhui Jiang, Xueqian Li, Chengyuan Gu, Zhenzhen Yao, Qixiu Hou, Mengting Guo, Siyi Lu, Depei Wu, Yue Han\",\"doi\":\"10.1016/j.ymthe.2024.12.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis-induced thrombocytopenia (SIT) is a widely accepted predictor of poor prognosis during sepsis, while the mechanism of SIT remains elusive. In this study, we revealed that SIT patients and septic mice exhibited higher levels of pro-inflammatory macrophages and phosphorylated Bruton's tyrosine kinase (p-BTK) expression in macrophages, which were closely correlated with platelet counts. Treatment with the BTK inhibitor BGB-3111 in SIT mice resulted in enhanced production of megakaryocytes and platelets. Depletion of macrophages in SIT mice and coculture experiments further confirmed the critical role of macrophages in the improvement of platelet count induced by BGB-3111. By performing single-cell RNA sequencing on bone marrow-derived cells from SIT mice, we not only confirmed the connection between macrophages and megakaryocytes influenced by BTK but also identified a potential mediation through the Rap1 signaling pathway in macrophages. Subsequent experiments in macrophages demonstrated that inhibition of BTK signaling impeded the pro-inflammatory polarization of macrophages by targeting the Rap1/NF-κB signaling pathway. In conclusion, our study highlights the crucial role of macrophages in SIT, and inhibiting phosphorylation of BTK in macrophages may alleviate SIT through the Rap1/NF-κB signaling pathway.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.12.048\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.12.048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Impaired megakaryopoiesis due to aberrant macrophage polarization via BTK/Rap1/NF-κB pathway in sepsis-induced thrombocytopenia.
Sepsis-induced thrombocytopenia (SIT) is a widely accepted predictor of poor prognosis during sepsis, while the mechanism of SIT remains elusive. In this study, we revealed that SIT patients and septic mice exhibited higher levels of pro-inflammatory macrophages and phosphorylated Bruton's tyrosine kinase (p-BTK) expression in macrophages, which were closely correlated with platelet counts. Treatment with the BTK inhibitor BGB-3111 in SIT mice resulted in enhanced production of megakaryocytes and platelets. Depletion of macrophages in SIT mice and coculture experiments further confirmed the critical role of macrophages in the improvement of platelet count induced by BGB-3111. By performing single-cell RNA sequencing on bone marrow-derived cells from SIT mice, we not only confirmed the connection between macrophages and megakaryocytes influenced by BTK but also identified a potential mediation through the Rap1 signaling pathway in macrophages. Subsequent experiments in macrophages demonstrated that inhibition of BTK signaling impeded the pro-inflammatory polarization of macrophages by targeting the Rap1/NF-κB signaling pathway. In conclusion, our study highlights the crucial role of macrophages in SIT, and inhibiting phosphorylation of BTK in macrophages may alleviate SIT through the Rap1/NF-κB signaling pathway.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.