基于单细胞RNA测序的杂合性突变缺失的贝叶斯系统发育谱系重建。

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2025-01-01 DOI:10.1007/978-1-0716-4310-5_1
Donovan J Anderson, Marshall S Horwitz
{"title":"基于单细胞RNA测序的杂合性突变缺失的贝叶斯系统发育谱系重建。","authors":"Donovan J Anderson, Marshall S Horwitz","doi":"10.1007/978-1-0716-4310-5_1","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations are acquired frequently, such t`hat each cell's genome inscribes its history of cell divisions. Loss of heterozygosity (LOH) accumulates throughout the genome, offering large encoding capacity for phylogenetic inference of cell lineage.In this chapter, we demonstrate a method, using single-cell RNA sequencing, for reconstructing cell lineages from inferred LOH events in a Bayesian manner, annotating the lineage with cell phenotypes, and marking developmental time points based on X-chromosome inactivation. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and was initially developed to investigate Emx1+ cortical projection neuron and glia lineages from C57Bl/6J (B6) and CAST/EiJ (CA) interstrain F1 mice, describing progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2886 ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Phylogenetic Lineage Reconstruction with Loss of Heterozygosity Mutations Derived from Single-Cell RNA Sequencing.\",\"authors\":\"Donovan J Anderson, Marshall S Horwitz\",\"doi\":\"10.1007/978-1-0716-4310-5_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations are acquired frequently, such t`hat each cell's genome inscribes its history of cell divisions. Loss of heterozygosity (LOH) accumulates throughout the genome, offering large encoding capacity for phylogenetic inference of cell lineage.In this chapter, we demonstrate a method, using single-cell RNA sequencing, for reconstructing cell lineages from inferred LOH events in a Bayesian manner, annotating the lineage with cell phenotypes, and marking developmental time points based on X-chromosome inactivation. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and was initially developed to investigate Emx1+ cortical projection neuron and glia lineages from C57Bl/6J (B6) and CAST/EiJ (CA) interstrain F1 mice, describing progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2886 \",\"pages\":\"1-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-4310-5_1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4310-5_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

突变是经常获得的,因此每个细胞的基因组都记录着它的细胞分裂史。杂合性缺失(LOH)在整个基因组中积累,为细胞谱系的系统发育推断提供了很大的编码能力。在本章中,我们展示了一种方法,使用单细胞RNA测序,以贝叶斯方式从推断的LOH事件重建细胞系,用细胞表型注释谱系,并根据x染色体失活标记发育时间点。这种类型的回顾性分析可以纳入scRNA-seq流程,最初用于研究来自C57Bl/6J (B6)和CAST/EiJ (CA)株间F1小鼠的Emx1+皮质投射神经元和胶质细胞谱系,描述祖细胞通过刻板扩增和不同的神经发生波产生多种皮质细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Phylogenetic Lineage Reconstruction with Loss of Heterozygosity Mutations Derived from Single-Cell RNA Sequencing.

Mutations are acquired frequently, such t`hat each cell's genome inscribes its history of cell divisions. Loss of heterozygosity (LOH) accumulates throughout the genome, offering large encoding capacity for phylogenetic inference of cell lineage.In this chapter, we demonstrate a method, using single-cell RNA sequencing, for reconstructing cell lineages from inferred LOH events in a Bayesian manner, annotating the lineage with cell phenotypes, and marking developmental time points based on X-chromosome inactivation. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and was initially developed to investigate Emx1+ cortical projection neuron and glia lineages from C57Bl/6J (B6) and CAST/EiJ (CA) interstrain F1 mice, describing progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
Generation and Characterization of a New Aging Skin Human Dermal Extracellular Matrix Scaffold. A Protocol for Detecting DNA Methylation Changes at CpG Sites of Stemness-Related Genes in Aging Stem Cells. Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer. Reproducible, Scale-Up Production of Human Liver Organoids (HLOs) on a Pillar Plate Platform via Microarray 3D Bioprinting. RNA Interference Approaches to Study Epidermal Cell Adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1