{"title":"LINNAEUS:同时进行单细胞系谱追踪和细胞类型鉴定。","authors":"Bastiaan Spanjaard, Jan Philipp Junker","doi":"10.1007/978-1-0716-4310-5_12","DOIUrl":null,"url":null,"abstract":"<p><p>A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging. Here we present LINNAEUS (Spanjaard et al, Nat Biotechnol 36:469-473. https://doi.org/10.1038/nbt.4124 , 2018; Hu et al, Nat Genet 54:1227-1237. https://doi.org/10.1038/s41588-022-01129-5 , 2022) (LINeage tracing by Nuclease-Activated Editing of Ubiquitous Sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, LINNAEUS can be used to reconstruct organism-wide single-cell lineage trees. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2886 ","pages":"243-263"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LINNAEUS: Simultaneous Single-Cell Lineage Tracing and Cell Type Identification.\",\"authors\":\"Bastiaan Spanjaard, Jan Philipp Junker\",\"doi\":\"10.1007/978-1-0716-4310-5_12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging. Here we present LINNAEUS (Spanjaard et al, Nat Biotechnol 36:469-473. https://doi.org/10.1038/nbt.4124 , 2018; Hu et al, Nat Genet 54:1227-1237. https://doi.org/10.1038/s41588-022-01129-5 , 2022) (LINeage tracing by Nuclease-Activated Editing of Ubiquitous Sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, LINNAEUS can be used to reconstruct organism-wide single-cell lineage trees. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2886 \",\"pages\":\"243-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-4310-5_12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4310-5_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
LINNAEUS: Simultaneous Single-Cell Lineage Tracing and Cell Type Identification.
A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging. Here we present LINNAEUS (Spanjaard et al, Nat Biotechnol 36:469-473. https://doi.org/10.1038/nbt.4124 , 2018; Hu et al, Nat Genet 54:1227-1237. https://doi.org/10.1038/s41588-022-01129-5 , 2022) (LINeage tracing by Nuclease-Activated Editing of Ubiquitous Sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, LINNAEUS can be used to reconstruct organism-wide single-cell lineage trees. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.