LINNAEUS:同时进行单细胞系谱追踪和细胞类型鉴定。

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2025-01-01 DOI:10.1007/978-1-0716-4310-5_12
Bastiaan Spanjaard, Jan Philipp Junker
{"title":"LINNAEUS:同时进行单细胞系谱追踪和细胞类型鉴定。","authors":"Bastiaan Spanjaard, Jan Philipp Junker","doi":"10.1007/978-1-0716-4310-5_12","DOIUrl":null,"url":null,"abstract":"<p><p>A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging. Here we present LINNAEUS (Spanjaard et al, Nat Biotechnol 36:469-473. https://doi.org/10.1038/nbt.4124 , 2018; Hu et al, Nat Genet 54:1227-1237. https://doi.org/10.1038/s41588-022-01129-5 , 2022) (LINeage tracing by Nuclease-Activated Editing of Ubiquitous Sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, LINNAEUS can be used to reconstruct organism-wide single-cell lineage trees. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2886 ","pages":"243-263"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LINNAEUS: Simultaneous Single-Cell Lineage Tracing and Cell Type Identification.\",\"authors\":\"Bastiaan Spanjaard, Jan Philipp Junker\",\"doi\":\"10.1007/978-1-0716-4310-5_12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging. Here we present LINNAEUS (Spanjaard et al, Nat Biotechnol 36:469-473. https://doi.org/10.1038/nbt.4124 , 2018; Hu et al, Nat Genet 54:1227-1237. https://doi.org/10.1038/s41588-022-01129-5 , 2022) (LINeage tracing by Nuclease-Activated Editing of Ubiquitous Sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, LINNAEUS can be used to reconstruct organism-wide single-cell lineage trees. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2886 \",\"pages\":\"243-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-4310-5_12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4310-5_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

生物学的一个关键目标是了解在发育、再生和疾病等不同过程中可以观察到的许多细胞类型的起源。单细胞rna测序(scRNA-seq)通常用于识别组织或器官中的细胞类型。然而,将细胞类型的分类组织到谱系树中以了解细胞状态的起源和细胞之间的关系仍然具有挑战性。这里我们介绍LINNAEUS (Spanjaard等人,Nat biotechnology 36:46 69-473)。https://doi.org/10.1038/nbt.4124, 2018;[j] .中国生物医学工程学报,34(4):1227-1237。https://doi.org/10.1038/s41588-022-01129-5, 2022)(通过核酸酶激活编辑无处不在的序列进行谱系追踪)-在数千个单细胞中同时进行谱系追踪和转录组分析的策略。通过将scRNA-seq与转基因报告基因基因组编辑产生的谱系条形码计算分析相结合,LINNAEUS可用于重建全生物单细胞谱系树。LINNAEUS提供了一种系统的方法来追踪新细胞类型的起源,或在不同条件下已知的细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LINNAEUS: Simultaneous Single-Cell Lineage Tracing and Cell Type Identification.

A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging. Here we present LINNAEUS (Spanjaard et al, Nat Biotechnol 36:469-473. https://doi.org/10.1038/nbt.4124 , 2018; Hu et al, Nat Genet 54:1227-1237. https://doi.org/10.1038/s41588-022-01129-5 , 2022) (LINeage tracing by Nuclease-Activated Editing of Ubiquitous Sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, LINNAEUS can be used to reconstruct organism-wide single-cell lineage trees. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
Generation and Characterization of a New Aging Skin Human Dermal Extracellular Matrix Scaffold. A Protocol for Detecting DNA Methylation Changes at CpG Sites of Stemness-Related Genes in Aging Stem Cells. Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer. Reproducible, Scale-Up Production of Human Liver Organoids (HLOs) on a Pillar Plate Platform via Microarray 3D Bioprinting. RNA Interference Approaches to Study Epidermal Cell Adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1