afliberept治疗视网膜静脉闭塞患者眼内液体量的机器学习量化:反叛研究。

IF 0.5 Q4 OPHTHALMOLOGY Journal of VitreoRetinal Diseases Pub Date : 2024-12-30 DOI:10.1177/24741264241308495
Mohammad A Khan, Simrat K Sodhi, Samantha Orr, John Golding, Austin Pereira, Ashley Patel, Jonathan D Oakley, Daniel B Russakoff, Anuradha Dhawan, Niveditha Pattathil, Netan Choudhry
{"title":"afliberept治疗视网膜静脉闭塞患者眼内液体量的机器学习量化:反叛研究。","authors":"Mohammad A Khan, Simrat K Sodhi, Samantha Orr, John Golding, Austin Pereira, Ashley Patel, Jonathan D Oakley, Daniel B Russakoff, Anuradha Dhawan, Niveditha Pattathil, Netan Choudhry","doi":"10.1177/24741264241308495","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> To evaluate the combined relationship between ischemia, retinal fluid, and layer thickness measurements with visual acuity (VA) outcomes in patients with retinal vein occlusion (RVO). <b>Methods:</b> Swept-source optical coherence tomography (OCT) data were used to assess retinal layer thickness and quantify intraretinal fluid (IRF) and subretinal fluid (SRF) using a deep learning-based, macular fluid segmentation algorithm for treatment-naïve eyes diagnosed with visual impairment resulting from central RVO (CRVO) or branch RVO (BRVO). Patients received 3 loading doses of 2 mg intravitreal aflibercept injections and were then put on a treat-and-extend regimen. Image analysis was performed at baseline and postoperatively at 3 months and 6 months. The baseline OCT morphologic features and fluid measurements were correlated with the changes in best-corrected VA (BCVA) using the Pearson correlation coefficient (<i>r</i>). <b>Results:</b> The study comprised 49 eyes. A combined model incorporating thickness in the outer plexiform layer (OPL), retinal nerve fiber layer (RNFL), and presence of IRF had the strongest overall correlation for CRVO (<i>r</i> = 0.865; <i>P</i> < .05). For BRVO, the addition of IRF to the OPL-inner nasal model had a strong correlation (<i>r</i> = 0.803; <i>P</i> < .05). The baseline ischemic index in the deep capillary complex showed a notable correlation with the 6-month change in BCVA for CRVO (<i>r</i> = 0.9101; <i>P</i> < .001) and BRVO (<i>r</i> = 0.9200; <i>P</i> < .001). <b>Conclusions:</b> A combined model of IRF volume, OPL, and RNFL layer thicknesses, along with ischemic indices, provides the best correlation to BCVA changes. Combined fluid and layer segmentation of OCT images provides clinically useful biomarkers for RVO patients. These results give insight into the pathology of RVOs and describe the relationship between deep capillary complex ischemia and OPL/RNFL thickness in BCVA outcomes.</p>","PeriodicalId":17919,"journal":{"name":"Journal of VitreoRetinal Diseases","volume":" ","pages":"24741264241308495"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Quantification of Fluid Volume in Eyes With Retinal Vein Occlusion Treated With Aflibercept: The REVOLT Study.\",\"authors\":\"Mohammad A Khan, Simrat K Sodhi, Samantha Orr, John Golding, Austin Pereira, Ashley Patel, Jonathan D Oakley, Daniel B Russakoff, Anuradha Dhawan, Niveditha Pattathil, Netan Choudhry\",\"doi\":\"10.1177/24741264241308495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> To evaluate the combined relationship between ischemia, retinal fluid, and layer thickness measurements with visual acuity (VA) outcomes in patients with retinal vein occlusion (RVO). <b>Methods:</b> Swept-source optical coherence tomography (OCT) data were used to assess retinal layer thickness and quantify intraretinal fluid (IRF) and subretinal fluid (SRF) using a deep learning-based, macular fluid segmentation algorithm for treatment-naïve eyes diagnosed with visual impairment resulting from central RVO (CRVO) or branch RVO (BRVO). Patients received 3 loading doses of 2 mg intravitreal aflibercept injections and were then put on a treat-and-extend regimen. Image analysis was performed at baseline and postoperatively at 3 months and 6 months. The baseline OCT morphologic features and fluid measurements were correlated with the changes in best-corrected VA (BCVA) using the Pearson correlation coefficient (<i>r</i>). <b>Results:</b> The study comprised 49 eyes. A combined model incorporating thickness in the outer plexiform layer (OPL), retinal nerve fiber layer (RNFL), and presence of IRF had the strongest overall correlation for CRVO (<i>r</i> = 0.865; <i>P</i> < .05). For BRVO, the addition of IRF to the OPL-inner nasal model had a strong correlation (<i>r</i> = 0.803; <i>P</i> < .05). The baseline ischemic index in the deep capillary complex showed a notable correlation with the 6-month change in BCVA for CRVO (<i>r</i> = 0.9101; <i>P</i> < .001) and BRVO (<i>r</i> = 0.9200; <i>P</i> < .001). <b>Conclusions:</b> A combined model of IRF volume, OPL, and RNFL layer thicknesses, along with ischemic indices, provides the best correlation to BCVA changes. Combined fluid and layer segmentation of OCT images provides clinically useful biomarkers for RVO patients. These results give insight into the pathology of RVOs and describe the relationship between deep capillary complex ischemia and OPL/RNFL thickness in BCVA outcomes.</p>\",\"PeriodicalId\":17919,\"journal\":{\"name\":\"Journal of VitreoRetinal Diseases\",\"volume\":\" \",\"pages\":\"24741264241308495\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of VitreoRetinal Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/24741264241308495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of VitreoRetinal Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/24741264241308495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:评价视网膜静脉闭塞(RVO)患者视网膜缺血、视网膜液体和视网膜层厚度测量与视力(VA)结果的综合关系。方法:使用扫描源光学相干断层扫描(OCT)数据评估视网膜层厚度,并使用基于深度学习的黄斑液分割算法对treatment-naïve被诊断为中央RVO (CRVO)或分支RVO (BRVO)导致的视力障碍的眼睛进行视网膜内液(IRF)和视网膜下液(SRF)的量化。患者接受3次负荷剂量的2mg玻璃体内注射,然后进行治疗和延长方案。在基线和术后3个月和6个月进行图像分析。使用Pearson相关系数(r),基线OCT形态学特征和液体测量与最佳校正VA (BCVA)的变化相关。结果:该研究包括49只眼睛。结合外丛状层(OPL)、视网膜神经纤维层(RNFL)厚度和IRF存在的联合模型与CRVO的总体相关性最强(r = 0.865;P r = 0.803;P r = 0.9101;P r = 0.9200;结论:IRF体积、OPL、RNFL层厚度与缺血性指标的联合模型与BCVA变化的相关性最好。结合流体和层分割OCT图像为RVO患者提供临床有用的生物标志物。这些结果揭示了RVOs的病理机制,并描述了深毛细血管复杂缺血与BCVA结果中OPL/RNFL厚度之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Quantification of Fluid Volume in Eyes With Retinal Vein Occlusion Treated With Aflibercept: The REVOLT Study.

Purpose: To evaluate the combined relationship between ischemia, retinal fluid, and layer thickness measurements with visual acuity (VA) outcomes in patients with retinal vein occlusion (RVO). Methods: Swept-source optical coherence tomography (OCT) data were used to assess retinal layer thickness and quantify intraretinal fluid (IRF) and subretinal fluid (SRF) using a deep learning-based, macular fluid segmentation algorithm for treatment-naïve eyes diagnosed with visual impairment resulting from central RVO (CRVO) or branch RVO (BRVO). Patients received 3 loading doses of 2 mg intravitreal aflibercept injections and were then put on a treat-and-extend regimen. Image analysis was performed at baseline and postoperatively at 3 months and 6 months. The baseline OCT morphologic features and fluid measurements were correlated with the changes in best-corrected VA (BCVA) using the Pearson correlation coefficient (r). Results: The study comprised 49 eyes. A combined model incorporating thickness in the outer plexiform layer (OPL), retinal nerve fiber layer (RNFL), and presence of IRF had the strongest overall correlation for CRVO (r = 0.865; P < .05). For BRVO, the addition of IRF to the OPL-inner nasal model had a strong correlation (r = 0.803; P < .05). The baseline ischemic index in the deep capillary complex showed a notable correlation with the 6-month change in BCVA for CRVO (r = 0.9101; P < .001) and BRVO (r = 0.9200; P < .001). Conclusions: A combined model of IRF volume, OPL, and RNFL layer thicknesses, along with ischemic indices, provides the best correlation to BCVA changes. Combined fluid and layer segmentation of OCT images provides clinically useful biomarkers for RVO patients. These results give insight into the pathology of RVOs and describe the relationship between deep capillary complex ischemia and OPL/RNFL thickness in BCVA outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
期刊最新文献
Visual Outcomes and Complications: Staged vs Simultaneous Pars Plana Vitrectomy and Scleral-Sutured Intraocular Lens Placement. Adult-Onset Presentations of Retinopathy Associated With Short Telomere Syndromes. Sub-Inner Limiting Membrane Hemorrhage Secondary to Dengue Fever Treated With Nd: YAG Laser Hyaloidotomy. Delayed-Onset White-Dot Syndrome in the Setting of Traumatic Choroidal Rupture. From the Editor-in-Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1