{"title":"对右心衰心室重构机制的全面认识。","authors":"Dongmei Jiang, Jie Wang, Rui Wang, Yun Wu","doi":"10.31083/j.rcm2512426","DOIUrl":null,"url":null,"abstract":"<p><p>Ventricular remodeling in right heart failure is a complex pathological process involving interactions between multiple mechanisms. Overactivation of the neuro-hormonal pathways, activation of the oxidative stress response, expression of cytokines, apoptosis of cardiomyocytes, and alterations of the extracellular matrix (ECM) are among the major mechanisms involved in the development of ventricular remodeling in right heart failure. These mechanisms are involved in ventricular remodeling, such as myocardial hypertrophy and fibrosis, leading to the deterioration of myocardial systolic and diastolic function. A deeper understanding of these mechanisms can help develop more effective therapeutic strategies in patients with right heart failure (RHF) to improve patient survival and quality of life. Despite the importance of ventricular remodeling in RHF, there are a limited number of studies in this field. This article explores in-depth historical and current information about the specific mechanisms in ventricular remodeling in RHF, providing a theoretical rationale for recognizing its importance in health and disease.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":"25 12","pages":"426"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Insights into Mechanisms for Ventricular Remodeling in Right Heart Failure.\",\"authors\":\"Dongmei Jiang, Jie Wang, Rui Wang, Yun Wu\",\"doi\":\"10.31083/j.rcm2512426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ventricular remodeling in right heart failure is a complex pathological process involving interactions between multiple mechanisms. Overactivation of the neuro-hormonal pathways, activation of the oxidative stress response, expression of cytokines, apoptosis of cardiomyocytes, and alterations of the extracellular matrix (ECM) are among the major mechanisms involved in the development of ventricular remodeling in right heart failure. These mechanisms are involved in ventricular remodeling, such as myocardial hypertrophy and fibrosis, leading to the deterioration of myocardial systolic and diastolic function. A deeper understanding of these mechanisms can help develop more effective therapeutic strategies in patients with right heart failure (RHF) to improve patient survival and quality of life. Despite the importance of ventricular remodeling in RHF, there are a limited number of studies in this field. This article explores in-depth historical and current information about the specific mechanisms in ventricular remodeling in RHF, providing a theoretical rationale for recognizing its importance in health and disease.</p>\",\"PeriodicalId\":20989,\"journal\":{\"name\":\"Reviews in cardiovascular medicine\",\"volume\":\"25 12\",\"pages\":\"426\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in cardiovascular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/j.rcm2512426\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.rcm2512426","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Comprehensive Insights into Mechanisms for Ventricular Remodeling in Right Heart Failure.
Ventricular remodeling in right heart failure is a complex pathological process involving interactions between multiple mechanisms. Overactivation of the neuro-hormonal pathways, activation of the oxidative stress response, expression of cytokines, apoptosis of cardiomyocytes, and alterations of the extracellular matrix (ECM) are among the major mechanisms involved in the development of ventricular remodeling in right heart failure. These mechanisms are involved in ventricular remodeling, such as myocardial hypertrophy and fibrosis, leading to the deterioration of myocardial systolic and diastolic function. A deeper understanding of these mechanisms can help develop more effective therapeutic strategies in patients with right heart failure (RHF) to improve patient survival and quality of life. Despite the importance of ventricular remodeling in RHF, there are a limited number of studies in this field. This article explores in-depth historical and current information about the specific mechanisms in ventricular remodeling in RHF, providing a theoretical rationale for recognizing its importance in health and disease.
期刊介绍:
RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.