中脑中一种分子上截然不同的细胞类型调控着小鼠的攻击行为。

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2025-01-01 DOI:10.7150/thno.101658
Chunyang Li, Cheng Miao, Yao Ge, Jiaxing Wu, Panpan Gao, Songlin Yin, Pei Zhang, Hongbin Yang, Bo Tian, Wenqiang Chen, Xiao Qian Chen
{"title":"中脑中一种分子上截然不同的细胞类型调控着小鼠的攻击行为。","authors":"Chunyang Li, Cheng Miao, Yao Ge, Jiaxing Wu, Panpan Gao, Songlin Yin, Pei Zhang, Hongbin Yang, Bo Tian, Wenqiang Chen, Xiao Qian Chen","doi":"10.7150/thno.101658","DOIUrl":null,"url":null,"abstract":"<p><p><b>Rationale</b>: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, <i>Tachykinin 2</i>-expressing (Tac2<sup>+</sup>) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. <b>Methods</b>: We combined activity mapping, <i>in vivo</i> Ca<sup>2+</sup> recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model. <b>Results</b>: We revealed that dmPAG<sup>Tac2</sup> neurons are selectively activated by fighting behaviors. Chemogenetic activation of these neurons evoked fighting behaviors, while inhibition or genetic ablation of dmPAG<sup>Tac2</sup> neurons attenuated fighting behaviors. TRAP profiling of dmPAG<sup>Tac2</sup> neurons revealed an enrichment of serotonin-associated transcripts in response to fighting behaviors. Finally, we validated these effects by selectively administering pharmacological agents to the dmPAG, reversing the behavioral outcomes induced by chemogenetic manipulation. <b>Conclusions</b>: We identify dmPAG<sup>Tac2</sup> neurons as critical modulators of aggressive behavior in mouse and thus suggest a distinct molecular target for the treatment of exacerbated aggressive behaviors in populations that exhibit high-level of violence.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 2","pages":"707-725"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671387/pdf/","citationCount":"0","resultStr":"{\"title\":\"A molecularly distinct cell type in the midbrain regulates intermale aggression behaviors in mice.\",\"authors\":\"Chunyang Li, Cheng Miao, Yao Ge, Jiaxing Wu, Panpan Gao, Songlin Yin, Pei Zhang, Hongbin Yang, Bo Tian, Wenqiang Chen, Xiao Qian Chen\",\"doi\":\"10.7150/thno.101658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Rationale</b>: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, <i>Tachykinin 2</i>-expressing (Tac2<sup>+</sup>) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. <b>Methods</b>: We combined activity mapping, <i>in vivo</i> Ca<sup>2+</sup> recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model. <b>Results</b>: We revealed that dmPAG<sup>Tac2</sup> neurons are selectively activated by fighting behaviors. Chemogenetic activation of these neurons evoked fighting behaviors, while inhibition or genetic ablation of dmPAG<sup>Tac2</sup> neurons attenuated fighting behaviors. TRAP profiling of dmPAG<sup>Tac2</sup> neurons revealed an enrichment of serotonin-associated transcripts in response to fighting behaviors. Finally, we validated these effects by selectively administering pharmacological agents to the dmPAG, reversing the behavioral outcomes induced by chemogenetic manipulation. <b>Conclusions</b>: We identify dmPAG<sup>Tac2</sup> neurons as critical modulators of aggressive behavior in mouse and thus suggest a distinct molecular target for the treatment of exacerbated aggressive behaviors in populations that exhibit high-level of violence.</p>\",\"PeriodicalId\":22932,\"journal\":{\"name\":\"Theranostics\",\"volume\":\"15 2\",\"pages\":\"707-725\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theranostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7150/thno.101658\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.101658","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A molecularly distinct cell type in the midbrain regulates intermale aggression behaviors in mice.

Rationale: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, Tachykinin 2-expressing (Tac2+) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. Methods: We combined activity mapping, in vivo Ca2+ recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model. Results: We revealed that dmPAGTac2 neurons are selectively activated by fighting behaviors. Chemogenetic activation of these neurons evoked fighting behaviors, while inhibition or genetic ablation of dmPAGTac2 neurons attenuated fighting behaviors. TRAP profiling of dmPAGTac2 neurons revealed an enrichment of serotonin-associated transcripts in response to fighting behaviors. Finally, we validated these effects by selectively administering pharmacological agents to the dmPAG, reversing the behavioral outcomes induced by chemogenetic manipulation. Conclusions: We identify dmPAGTac2 neurons as critical modulators of aggressive behavior in mouse and thus suggest a distinct molecular target for the treatment of exacerbated aggressive behaviors in populations that exhibit high-level of violence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
CXCR4-directed endoradiotherapy with [177Lu]Pentixather added to total body irradiation for myeloablative conditioning in patients with relapsed/refractory acute myeloid leukemia. Development of dual aptamers-functionalized c-MET PROTAC degraders for targeted therapy of osteosarcoma. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Standardization and consensus in the development and application of bone organoids. First clinical utility of sensing Ultrasound Localization Microscopy (sULM): identifying renal pseudotumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1