对器官特异性IgA肾病系统机制的不断发展的理解:对肠肾串扰的关注。

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2025-01-01 DOI:10.7150/thno.104631
Xin Wang, Xu-Jie Zhou, Xue Qiao, Mario Falchi, Jing Liu, Hong Zhang
{"title":"对器官特异性IgA肾病系统机制的不断发展的理解:对肠肾串扰的关注。","authors":"Xin Wang, Xu-Jie Zhou, Xue Qiao, Mario Falchi, Jing Liu, Hong Zhang","doi":"10.7150/thno.104631","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies. Despite extensive research in IgA nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of IgAN remains challenging. Numerous studies suggest that alterations in the intestinal microbiome and its metabolites are pivotal in the progression of IgAN, opening new avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, such as <i>Akkermansia muciniphila</i>, have been implicated in the onset of IgAN, making the exploration of gut microbiota in the context of IgAN pathogenesis even more intriguing. In this review, we summarize the status of gut microbiology studies of IgAN and explore the possible mechanisms and intervention prospects. Future research and treatment directions may increasingly emphasize systemic, multi-organ combined interventions to decelerate the advancement of kidney disease and enhance the overall prognosis of patients.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 2","pages":"656-681"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671385/pdf/","citationCount":"0","resultStr":"{\"title\":\"The evolving understanding of systemic mechanisms in organ-specific IgA nephropathy: a focus on gut-kidney crosstalk.\",\"authors\":\"Xin Wang, Xu-Jie Zhou, Xue Qiao, Mario Falchi, Jing Liu, Hong Zhang\",\"doi\":\"10.7150/thno.104631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies. Despite extensive research in IgA nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of IgAN remains challenging. Numerous studies suggest that alterations in the intestinal microbiome and its metabolites are pivotal in the progression of IgAN, opening new avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, such as <i>Akkermansia muciniphila</i>, have been implicated in the onset of IgAN, making the exploration of gut microbiota in the context of IgAN pathogenesis even more intriguing. In this review, we summarize the status of gut microbiology studies of IgAN and explore the possible mechanisms and intervention prospects. Future research and treatment directions may increasingly emphasize systemic, multi-organ combined interventions to decelerate the advancement of kidney disease and enhance the overall prognosis of patients.</p>\",\"PeriodicalId\":22932,\"journal\":{\"name\":\"Theranostics\",\"volume\":\"15 2\",\"pages\":\"656-681\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theranostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7150/thno.104631\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.104631","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

多器官之间的相互作用,被称为器官间串扰,是了解肾脏疾病机制和治疗的一个复杂而重要的研究领域。肾脏不仅与许多其他器官发生病理相互作用,而且还通过各种信号通路与其他系统进行通信。了解这些机制对于开发更有效的治疗策略至关重要。尽管对最常见的肾脏疾病IgA肾病(IgAN)进行了广泛的研究,但IgAN的发病机制仍然具有挑战性。大量研究表明,肠道微生物组及其代谢物的改变在IgAN的进展中起着关键作用,为理解其机制开辟了新的途径。有趣的是,某些假定的益生菌,如嗜muciniphila,与IgAN的发病有关,这使得在IgAN发病机制背景下对肠道微生物群的探索更加有趣。本文综述了IgAN的肠道微生物学研究现状,并对其可能的作用机制和干预前景进行了探讨。未来的研究和治疗方向可能会越来越强调全身、多器官联合干预,以减缓肾脏疾病的进展,提高患者的整体预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The evolving understanding of systemic mechanisms in organ-specific IgA nephropathy: a focus on gut-kidney crosstalk.

The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies. Despite extensive research in IgA nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of IgAN remains challenging. Numerous studies suggest that alterations in the intestinal microbiome and its metabolites are pivotal in the progression of IgAN, opening new avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, such as Akkermansia muciniphila, have been implicated in the onset of IgAN, making the exploration of gut microbiota in the context of IgAN pathogenesis even more intriguing. In this review, we summarize the status of gut microbiology studies of IgAN and explore the possible mechanisms and intervention prospects. Future research and treatment directions may increasingly emphasize systemic, multi-organ combined interventions to decelerate the advancement of kidney disease and enhance the overall prognosis of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway. Macrophage-based pathogenesis and theranostics of vulnerable plaques. Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing. Optimized circular RNA vaccines for superior cancer immunotherapy. Light-eye-body axis: exploring the network from retinal illumination to systemic regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1