利用基于期刊引用的指标来增强大学排名方法。

Frontiers in research metrics and analytics Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.3389/frma.2024.1510169
Ali Ghaddar, Sergio Thoumi, Samer S Saab
{"title":"利用基于期刊引用的指标来增强大学排名方法。","authors":"Ali Ghaddar, Sergio Thoumi, Samer S Saab","doi":"10.3389/frma.2024.1510169","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel framework for evaluating research performance in university rankings, utilizing journal citation-based metrics and scholarly output instead of traditional article citation metrics. Through correlation analysis, we compare the proposed metrics with article citation metrics used by prominent ranking systems (THE and QS) and demonstrate significantly higher correlations with established rankings (QS, THE, and ARWU). The proposed metrics exhibit robustness over time and offer a fairer evaluation by emphasizing objective performance and mitigating citation biases. This framework provides institutions with a more accurate benchmarking tool to inform strategic decisions and resource allocation. While acknowledging potential limitations in data availability and the challenge of achieving global consensus, this study contributes to the ongoing discourse on university rankings by advocating for a more equitable and robust evaluation system by balancing diverse metrics and offering more standardized measures.</p>","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":"9 ","pages":"1510169"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging journal citation-based metrics for enhanced university rankings methodology.\",\"authors\":\"Ali Ghaddar, Sergio Thoumi, Samer S Saab\",\"doi\":\"10.3389/frma.2024.1510169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a novel framework for evaluating research performance in university rankings, utilizing journal citation-based metrics and scholarly output instead of traditional article citation metrics. Through correlation analysis, we compare the proposed metrics with article citation metrics used by prominent ranking systems (THE and QS) and demonstrate significantly higher correlations with established rankings (QS, THE, and ARWU). The proposed metrics exhibit robustness over time and offer a fairer evaluation by emphasizing objective performance and mitigating citation biases. This framework provides institutions with a more accurate benchmarking tool to inform strategic decisions and resource allocation. While acknowledging potential limitations in data availability and the challenge of achieving global consensus, this study contributes to the ongoing discourse on university rankings by advocating for a more equitable and robust evaluation system by balancing diverse metrics and offering more standardized measures.</p>\",\"PeriodicalId\":73104,\"journal\":{\"name\":\"Frontiers in research metrics and analytics\",\"volume\":\"9 \",\"pages\":\"1510169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in research metrics and analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frma.2024.1510169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2024.1510169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个新的框架来评估大学排名中的研究绩效,利用基于期刊引用的指标和学术产出,而不是传统的文章引用指标。通过相关性分析,我们将提议的指标与著名排名系统(the和QS)使用的文章引用指标进行了比较,并证明与现有排名(QS、the和ARWU)的相关性显著更高。所提出的指标随着时间的推移表现出稳健性,并通过强调客观表现和减轻引用偏差提供更公平的评估。该框架为机构提供了更准确的基准工具,为战略决策和资源分配提供信息。在承认数据可用性的潜在局限性和实现全球共识的挑战的同时,本研究通过平衡不同的指标和提供更标准化的措施,倡导一个更公平、更健全的评估体系,为正在进行的大学排名讨论做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging journal citation-based metrics for enhanced university rankings methodology.

This paper proposes a novel framework for evaluating research performance in university rankings, utilizing journal citation-based metrics and scholarly output instead of traditional article citation metrics. Through correlation analysis, we compare the proposed metrics with article citation metrics used by prominent ranking systems (THE and QS) and demonstrate significantly higher correlations with established rankings (QS, THE, and ARWU). The proposed metrics exhibit robustness over time and offer a fairer evaluation by emphasizing objective performance and mitigating citation biases. This framework provides institutions with a more accurate benchmarking tool to inform strategic decisions and resource allocation. While acknowledging potential limitations in data availability and the challenge of achieving global consensus, this study contributes to the ongoing discourse on university rankings by advocating for a more equitable and robust evaluation system by balancing diverse metrics and offering more standardized measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
A worldwide itinerary of research ethics in science for a better social responsibility and justice: a bibliometric analysis and review. Economic value of HPC experience for new STEM professionals: Insights from STEM hiring managers. The ethics of artificial intelligence use in university libraries in Zimbabwe. Patent research in academic literature. Landscape and trends with a focus on patent analytics. A role for qualitative methods in researching Twitter data on a popular science article's communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1