{"title":"综合STEM问题解决中认知规范的形成及其影响:新加坡中学生STEM探究的研究","authors":"Jina Chang, Tang Wee Teo, Aik Ling Tan","doi":"10.1007/s11165-024-10222-0","DOIUrl":null,"url":null,"abstract":"<p>Guiding students’ STEM problem solving entails dynamic processes driven by changes in real-world contexts. To understand these processes, we aimed to identify the formation and influence of ‘norms’ as shared behaviour patterns desirable in STEM problem-solving. To this end, 10 sessions of STEM lessons for secondary students were carried out, and we collected data comprising lesson observation videos, fieldnotes, interviews, and photographs of students’ artifacts. The data were analysed based on three features of norms: justifiability, sharing, and behaviours. The results report three epistemic norms in STEM problem-solving. First, the norm of ‘defining a real-world problem that is useful and accessible’ was found. While the students searched for useful problems in their everyday lives, they also needed to ensure that these problems were scoped such that they had the capacity to manage them. The second norm was ‘designing creative and concrete prototypes’. Students’ prototypes were expected to be creative in addressing the established problems and to be developed in a concrete manner. The last norm identified was ‘testing and revising in more iterative and feasible ways’. The students tested their models repeatedly in a manner aligning with their skills and the materials provided. Based on the findings, educational implications are discussed in terms of understanding and facilitating STEM problem-solving.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":"83 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation and Influence of Epistemic Norms in Integrated STEM Problem- Solving: a Study of Singapore Secondary Students’ STEM Inquiry\",\"authors\":\"Jina Chang, Tang Wee Teo, Aik Ling Tan\",\"doi\":\"10.1007/s11165-024-10222-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Guiding students’ STEM problem solving entails dynamic processes driven by changes in real-world contexts. To understand these processes, we aimed to identify the formation and influence of ‘norms’ as shared behaviour patterns desirable in STEM problem-solving. To this end, 10 sessions of STEM lessons for secondary students were carried out, and we collected data comprising lesson observation videos, fieldnotes, interviews, and photographs of students’ artifacts. The data were analysed based on three features of norms: justifiability, sharing, and behaviours. The results report three epistemic norms in STEM problem-solving. First, the norm of ‘defining a real-world problem that is useful and accessible’ was found. While the students searched for useful problems in their everyday lives, they also needed to ensure that these problems were scoped such that they had the capacity to manage them. The second norm was ‘designing creative and concrete prototypes’. Students’ prototypes were expected to be creative in addressing the established problems and to be developed in a concrete manner. The last norm identified was ‘testing and revising in more iterative and feasible ways’. The students tested their models repeatedly in a manner aligning with their skills and the materials provided. Based on the findings, educational implications are discussed in terms of understanding and facilitating STEM problem-solving.</p>\",\"PeriodicalId\":47988,\"journal\":{\"name\":\"Research in Science Education\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11165-024-10222-0\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10222-0","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Formation and Influence of Epistemic Norms in Integrated STEM Problem- Solving: a Study of Singapore Secondary Students’ STEM Inquiry
Guiding students’ STEM problem solving entails dynamic processes driven by changes in real-world contexts. To understand these processes, we aimed to identify the formation and influence of ‘norms’ as shared behaviour patterns desirable in STEM problem-solving. To this end, 10 sessions of STEM lessons for secondary students were carried out, and we collected data comprising lesson observation videos, fieldnotes, interviews, and photographs of students’ artifacts. The data were analysed based on three features of norms: justifiability, sharing, and behaviours. The results report three epistemic norms in STEM problem-solving. First, the norm of ‘defining a real-world problem that is useful and accessible’ was found. While the students searched for useful problems in their everyday lives, they also needed to ensure that these problems were scoped such that they had the capacity to manage them. The second norm was ‘designing creative and concrete prototypes’. Students’ prototypes were expected to be creative in addressing the established problems and to be developed in a concrete manner. The last norm identified was ‘testing and revising in more iterative and feasible ways’. The students tested their models repeatedly in a manner aligning with their skills and the materials provided. Based on the findings, educational implications are discussed in terms of understanding and facilitating STEM problem-solving.
期刊介绍:
2020 Five-Year Impact Factor: 4.021
2020 Impact Factor: 5.439
Ranking: 107/1319 (Education) – Scopus
2020 CiteScore 34.7 – Scopus
Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership.
RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal.
You should consider submitting your manscript to RISE if your research:
Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and
Advances our knowledge in science education research rather than reproducing what we already know.
RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted.
The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers.
Empircal contributions are:
Theoretically or conceptually grounded;
Relevant to science education theory and practice;
Highlight limitations of the study; and
Identify possible future research opportunities.
From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks.
Before you submit your manuscript to RISE, please consider the following checklist. Your paper is:
No longer than 6000 words, including references.
Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability;
Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education;
Internationalised in the sense that your work has relevance beyond your context to a broader audience; and
Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE.
While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.