Mingliang Zhou, Wenhao Shen, Xuekai Wei, Jun Luo, Fan Jia, Xu Zhuang, Weijia Jia
{"title":"盲图像质量评估:通过质量对抗学习探索内容保真度感知","authors":"Mingliang Zhou, Wenhao Shen, Xuekai Wei, Jun Luo, Fan Jia, Xu Zhuang, Weijia Jia","doi":"10.1007/s11263-024-02338-7","DOIUrl":null,"url":null,"abstract":"<p>In deep learning-based no-reference image quality assessment (NR-IQA) methods, the absence of reference images limits their ability to assess content fidelity, making it difficult to distinguish between original content and distortions that degrade quality. To address this issue, we propose a quality adversarial learning framework emphasizing both content fidelity and prediction accuracy. The main contributions of this study are as follows: First, we investigate the importance of content fidelity, especially in no-reference scenarios. Second, we propose a quality adversarial learning framework that dynamically adapts and refines the image quality assessment process on the basis of the quality optimization results. The framework generates adversarial samples for the quality prediction model, and simultaneously, the quality prediction model optimizes the quality prediction model by using these adversarial samples to maintain fidelity and improve accuracy. Finally, we demonstrate that by employing the quality prediction model as a loss function for image quality optimization, our framework effectively reduces the generation of artifacts, highlighting its superior ability to preserve content fidelity. The experimental results demonstrate the validity of our method compared with state-of-the-art NR-IQA methods. The code is publicly available at the following website: https://github.com/Land5cape/QAL-IQA.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"27 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Image Quality Assessment: Exploring Content Fidelity Perceptibility via Quality Adversarial Learning\",\"authors\":\"Mingliang Zhou, Wenhao Shen, Xuekai Wei, Jun Luo, Fan Jia, Xu Zhuang, Weijia Jia\",\"doi\":\"10.1007/s11263-024-02338-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In deep learning-based no-reference image quality assessment (NR-IQA) methods, the absence of reference images limits their ability to assess content fidelity, making it difficult to distinguish between original content and distortions that degrade quality. To address this issue, we propose a quality adversarial learning framework emphasizing both content fidelity and prediction accuracy. The main contributions of this study are as follows: First, we investigate the importance of content fidelity, especially in no-reference scenarios. Second, we propose a quality adversarial learning framework that dynamically adapts and refines the image quality assessment process on the basis of the quality optimization results. The framework generates adversarial samples for the quality prediction model, and simultaneously, the quality prediction model optimizes the quality prediction model by using these adversarial samples to maintain fidelity and improve accuracy. Finally, we demonstrate that by employing the quality prediction model as a loss function for image quality optimization, our framework effectively reduces the generation of artifacts, highlighting its superior ability to preserve content fidelity. The experimental results demonstrate the validity of our method compared with state-of-the-art NR-IQA methods. The code is publicly available at the following website: https://github.com/Land5cape/QAL-IQA.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02338-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02338-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
In deep learning-based no-reference image quality assessment (NR-IQA) methods, the absence of reference images limits their ability to assess content fidelity, making it difficult to distinguish between original content and distortions that degrade quality. To address this issue, we propose a quality adversarial learning framework emphasizing both content fidelity and prediction accuracy. The main contributions of this study are as follows: First, we investigate the importance of content fidelity, especially in no-reference scenarios. Second, we propose a quality adversarial learning framework that dynamically adapts and refines the image quality assessment process on the basis of the quality optimization results. The framework generates adversarial samples for the quality prediction model, and simultaneously, the quality prediction model optimizes the quality prediction model by using these adversarial samples to maintain fidelity and improve accuracy. Finally, we demonstrate that by employing the quality prediction model as a loss function for image quality optimization, our framework effectively reduces the generation of artifacts, highlighting its superior ability to preserve content fidelity. The experimental results demonstrate the validity of our method compared with state-of-the-art NR-IQA methods. The code is publicly available at the following website: https://github.com/Land5cape/QAL-IQA.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.