2020年安徽梅雨破纪录降水的微物理特征

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2024-12-31 DOI:10.1016/j.atmosres.2024.107900
Qiqi Yang, Shuliang Zhang, Yiheng Chen, Yuhan Jin, Hongyuan Fang
{"title":"2020年安徽梅雨破纪录降水的微物理特征","authors":"Qiqi Yang, Shuliang Zhang, Yiheng Chen, Yuhan Jin, Hongyuan Fang","doi":"10.1016/j.atmosres.2024.107900","DOIUrl":null,"url":null,"abstract":"The 2020 Meiyu season in Anhui, China, brought unprecedented rainfall, driven by a unique interplay of high precipitation frequency and elevated convective rainfall. This study examines the distinctive microphysical characteristics of raindrop size distribution (DSD) during this record-breaking season, using minute-level data from six disdrometer stations. Brief but intense rain events contributed up to 49.4 % of the total seasonal rainfall in only 6–7 % of the duration, with the mean drop diameter increasing from 1.2 mm to 2.1 mm and the mean normalized intercept parameter rising from 2.7 to 4.1 as rainfall rate intensified. Compared to prior Meiyu studies, our findings reveal distinct DSD patterns with larger raindrops and higher concentrations, reflecting a more convective-dominated structure unique to the 2020 season. Novel <ce:italic>μ</ce:italic>–<ce:italic>Λ</ce:italic> and <ce:italic>Z</ce:italic> − <ce:italic>R</ce:italic> relationships tailored for this event revealed larger raindrop sizes and concentrations compared to past studies. Enhanced dual-polarization radar rainfall prediction models were developed, with relationships between <mml:math altimg=\"si15.svg\"><mml:msub><mml:mi>Z</mml:mi><mml:mi mathvariant=\"italic\">dr</mml:mi></mml:msub></mml:math>, <mml:math altimg=\"si14.svg\"><mml:msub><mml:mi>Z</mml:mi><mml:mi>h</mml:mi></mml:msub></mml:math>, <mml:math altimg=\"si16.svg\"><mml:msub><mml:mi>K</mml:mi><mml:mi mathvariant=\"italic\">dp</mml:mi></mml:msub></mml:math>, and rainfall rate (<ce:italic>R</ce:italic>) showing exceptional accuracy, as evidenced by correlation coefficients nearing 1.0 and low RMSE and NMAE values. Additionally, new <ce:italic>KE</ce:italic>–<ce:italic>R</ce:italic> relationships accurately estimated rainfall kinetic energy (<ce:italic>KE</ce:italic>), with Power Law models best representing <mml:math altimg=\"si18.svg\"><mml:msub><mml:mi mathvariant=\"italic\">KE</mml:mi><mml:mi mathvariant=\"italic\">time</mml:mi></mml:msub></mml:math>–<ce:italic>R</ce:italic> and Logarithmic fits for <mml:math altimg=\"si19.svg\"><mml:msub><mml:mi mathvariant=\"italic\">KE</mml:mi><mml:mi mathvariant=\"italic\">mm</mml:mi></mml:msub></mml:math>–<ce:italic>R</ce:italic>. These findings demonstrate the importance of DSD-specific insights for understanding microphysical processes and improving QPE accuracy, with implications for flood and soil erosion management in eastern China.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"28 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microphysical characteristics of the 2020 record-breaking Meiyu rainfall in Anhui, China\",\"authors\":\"Qiqi Yang, Shuliang Zhang, Yiheng Chen, Yuhan Jin, Hongyuan Fang\",\"doi\":\"10.1016/j.atmosres.2024.107900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2020 Meiyu season in Anhui, China, brought unprecedented rainfall, driven by a unique interplay of high precipitation frequency and elevated convective rainfall. This study examines the distinctive microphysical characteristics of raindrop size distribution (DSD) during this record-breaking season, using minute-level data from six disdrometer stations. Brief but intense rain events contributed up to 49.4 % of the total seasonal rainfall in only 6–7 % of the duration, with the mean drop diameter increasing from 1.2 mm to 2.1 mm and the mean normalized intercept parameter rising from 2.7 to 4.1 as rainfall rate intensified. Compared to prior Meiyu studies, our findings reveal distinct DSD patterns with larger raindrops and higher concentrations, reflecting a more convective-dominated structure unique to the 2020 season. Novel <ce:italic>μ</ce:italic>–<ce:italic>Λ</ce:italic> and <ce:italic>Z</ce:italic> − <ce:italic>R</ce:italic> relationships tailored for this event revealed larger raindrop sizes and concentrations compared to past studies. Enhanced dual-polarization radar rainfall prediction models were developed, with relationships between <mml:math altimg=\\\"si15.svg\\\"><mml:msub><mml:mi>Z</mml:mi><mml:mi mathvariant=\\\"italic\\\">dr</mml:mi></mml:msub></mml:math>, <mml:math altimg=\\\"si14.svg\\\"><mml:msub><mml:mi>Z</mml:mi><mml:mi>h</mml:mi></mml:msub></mml:math>, <mml:math altimg=\\\"si16.svg\\\"><mml:msub><mml:mi>K</mml:mi><mml:mi mathvariant=\\\"italic\\\">dp</mml:mi></mml:msub></mml:math>, and rainfall rate (<ce:italic>R</ce:italic>) showing exceptional accuracy, as evidenced by correlation coefficients nearing 1.0 and low RMSE and NMAE values. Additionally, new <ce:italic>KE</ce:italic>–<ce:italic>R</ce:italic> relationships accurately estimated rainfall kinetic energy (<ce:italic>KE</ce:italic>), with Power Law models best representing <mml:math altimg=\\\"si18.svg\\\"><mml:msub><mml:mi mathvariant=\\\"italic\\\">KE</mml:mi><mml:mi mathvariant=\\\"italic\\\">time</mml:mi></mml:msub></mml:math>–<ce:italic>R</ce:italic> and Logarithmic fits for <mml:math altimg=\\\"si19.svg\\\"><mml:msub><mml:mi mathvariant=\\\"italic\\\">KE</mml:mi><mml:mi mathvariant=\\\"italic\\\">mm</mml:mi></mml:msub></mml:math>–<ce:italic>R</ce:italic>. These findings demonstrate the importance of DSD-specific insights for understanding microphysical processes and improving QPE accuracy, with implications for flood and soil erosion management in eastern China.\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.atmosres.2024.107900\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107900","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2020年安徽梅雨季节,在高降水频率和对流降水增加的独特相互作用下,出现了前所未有的降雨。本研究利用来自6个分差计站的分钟级数据,研究了这个破纪录季节中雨滴大小分布(DSD)的独特微物理特征。在6 ~ 7%的持续时间内,短时强降雨事件对季节总降雨量的贡献高达49.4%,随着降雨率的增加,平均降水直径从1.2 mm增加到2.1 mm,平均归一化截距参数从2.7增加到4.1。与之前的梅雨研究相比,我们的研究结果揭示了不同的DSD模式,雨滴更大,浓度更高,反映了2020年季节特有的对流主导结构。与过去的研究相比,为这一事件量身定制的新颖μ -Λ和Z - R关系揭示了更大的雨滴大小和浓度。建立了增强型双极化雷达降雨预报模型,Zdr、Zh、Kdp与降雨率(R)的相关系数接近1.0,RMSE和NMAE值均较低,预报精度较高。此外,新的KE - r关系准确地估计了降雨动能(KE),幂律模型最能代表KE - time - r,对数模型最适合KEmm-R。这些发现证明了dsd对理解微物理过程和提高QPE精度的重要性,对中国东部地区的洪水和土壤侵蚀管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microphysical characteristics of the 2020 record-breaking Meiyu rainfall in Anhui, China
The 2020 Meiyu season in Anhui, China, brought unprecedented rainfall, driven by a unique interplay of high precipitation frequency and elevated convective rainfall. This study examines the distinctive microphysical characteristics of raindrop size distribution (DSD) during this record-breaking season, using minute-level data from six disdrometer stations. Brief but intense rain events contributed up to 49.4 % of the total seasonal rainfall in only 6–7 % of the duration, with the mean drop diameter increasing from 1.2 mm to 2.1 mm and the mean normalized intercept parameter rising from 2.7 to 4.1 as rainfall rate intensified. Compared to prior Meiyu studies, our findings reveal distinct DSD patterns with larger raindrops and higher concentrations, reflecting a more convective-dominated structure unique to the 2020 season. Novel μΛ and Z − R relationships tailored for this event revealed larger raindrop sizes and concentrations compared to past studies. Enhanced dual-polarization radar rainfall prediction models were developed, with relationships between Zdr, Zh, Kdp, and rainfall rate (R) showing exceptional accuracy, as evidenced by correlation coefficients nearing 1.0 and low RMSE and NMAE values. Additionally, new KER relationships accurately estimated rainfall kinetic energy (KE), with Power Law models best representing KEtimeR and Logarithmic fits for KEmmR. These findings demonstrate the importance of DSD-specific insights for understanding microphysical processes and improving QPE accuracy, with implications for flood and soil erosion management in eastern China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
New insights into the molecular characteristics-dependent light absorption variation of water-soluble organic matter in biomass burning smoke Black carbon pollution over India simulated with recent emission inventories and WRF-CHEM model Characteristics of local recirculation affecting summer ozone in coastal areas of the Korean Peninsula Impacts of meteorological and precursor emission factors on PM2.5 and O3 from 2019 to 2022: Insights from multiple perspectives Evaluation of six latest precipitation datasets for extreme precipitation estimates and hydrological application across various climate regions in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1