Wei Zhang, Jing He, Yuxin Wang, Xiaozhen Wang, He Jin, Xu Zhang, Ling Kong, Yanchuan Wu, Yong Yang, Rong Wang
{"title":"有氧运动通过调节Annexin-A1-MAPK轴和星形胶质细胞极化改善慢性脑灌注不足小鼠的认知恢复。","authors":"Wei Zhang, Jing He, Yuxin Wang, Xiaozhen Wang, He Jin, Xu Zhang, Ling Kong, Yanchuan Wu, Yong Yang, Rong Wang","doi":"10.14336/AD.2024.01213","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice. Our findings demonstrate that aerobic exercise improved spatial memory in BCAS mice by enhancing white matter (WM) integrity and hippocampal function. WM integrity was confirmed through Luxol Fast Blue (LFB) staining and protein assays. Additionally, aerobic exercise mitigated BCAS-induced long-term potentiation (LTP) decay and upregulated hippocampal expression of key synaptic proteins, including N-methyl-D-aspartate receptor subunits NR2B and NR1, vesicular glutamate transporter 1 (vGluT1), and the synaptic scaffolding protein postsynaptic density protein 95 (PSD95). Furthermore, aerobic exercise enhanced the expression of the anti-inflammatory mediator ANXA1 through exosome secretion while simultaneously suppressing the MAPK signaling pathway. These molecular changes were associated with increased astrocyte proliferation and the polarization of astrocytes toward the A2 phenotype. These findings were further validated using an in vitro co-culture model of astrocytes (U251) and neurons (HT22). In summary, our study demonstrates that aerobic exercise improves WM integrity and hippocampal function by modulating the ANXA1/MAPK axis following astrocyte polarization. Thus, aerobic exercise emerges as a promising intervention for promoting functional recovery in VCID.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic Exercise Improves Cognitive Recovery in Mice with Chronic Cerebral Hypoperfusion by Modulating the Annexin-A1-MAPK Axis and Astrocyte Polarization.\",\"authors\":\"Wei Zhang, Jing He, Yuxin Wang, Xiaozhen Wang, He Jin, Xu Zhang, Ling Kong, Yanchuan Wu, Yong Yang, Rong Wang\",\"doi\":\"10.14336/AD.2024.01213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice. Our findings demonstrate that aerobic exercise improved spatial memory in BCAS mice by enhancing white matter (WM) integrity and hippocampal function. WM integrity was confirmed through Luxol Fast Blue (LFB) staining and protein assays. Additionally, aerobic exercise mitigated BCAS-induced long-term potentiation (LTP) decay and upregulated hippocampal expression of key synaptic proteins, including N-methyl-D-aspartate receptor subunits NR2B and NR1, vesicular glutamate transporter 1 (vGluT1), and the synaptic scaffolding protein postsynaptic density protein 95 (PSD95). Furthermore, aerobic exercise enhanced the expression of the anti-inflammatory mediator ANXA1 through exosome secretion while simultaneously suppressing the MAPK signaling pathway. These molecular changes were associated with increased astrocyte proliferation and the polarization of astrocytes toward the A2 phenotype. These findings were further validated using an in vitro co-culture model of astrocytes (U251) and neurons (HT22). In summary, our study demonstrates that aerobic exercise improves WM integrity and hippocampal function by modulating the ANXA1/MAPK axis following astrocyte polarization. Thus, aerobic exercise emerges as a promising intervention for promoting functional recovery in VCID.</p>\",\"PeriodicalId\":7434,\"journal\":{\"name\":\"Aging and Disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14336/AD.2024.01213\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2024.01213","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
慢性脑灌注不足引起的血管性认知障碍和痴呆(VCID)是全球第二大最常见的痴呆形式。有氧运动被广泛认为是对各种认知障碍的有效干预。本研究利用双侧颈总动脉狭窄(BCAS)模型,研究有氧运动是否通过膜联蛋白a1 (ANXA1)/丝裂原活化蛋白激酶(MAPK)轴促进BCAS小鼠的认知恢复。我们的研究结果表明,有氧运动通过增强白质(WM)完整性和海马功能改善BCAS小鼠的空间记忆。通过Luxol Fast Blue (LFB)染色和蛋白检测证实WM的完整性。此外,有氧运动减轻了bcas诱导的长期增强(LTP)衰退,并上调了海马关键突触蛋白的表达,包括n -甲基- d -天冬氨酸受体亚基NR2B和NR1、泡状谷氨酸转运蛋白1 (vGluT1)和突触支架蛋白突触后密度蛋白95 (PSD95)。此外,有氧运动通过外泌体分泌增强抗炎介质ANXA1的表达,同时抑制MAPK信号通路。这些分子变化与星形胶质细胞增殖增加和星形胶质细胞向A2表型极化有关。通过星形胶质细胞(U251)和神经元(HT22)的体外共培养模型进一步验证了这些发现。总之,我们的研究表明,有氧运动通过调节星形胶质细胞极化后的ANXA1/MAPK轴来改善WM完整性和海马功能。因此,有氧运动成为促进VCID功能恢复的有希望的干预措施。
Aerobic Exercise Improves Cognitive Recovery in Mice with Chronic Cerebral Hypoperfusion by Modulating the Annexin-A1-MAPK Axis and Astrocyte Polarization.
Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice. Our findings demonstrate that aerobic exercise improved spatial memory in BCAS mice by enhancing white matter (WM) integrity and hippocampal function. WM integrity was confirmed through Luxol Fast Blue (LFB) staining and protein assays. Additionally, aerobic exercise mitigated BCAS-induced long-term potentiation (LTP) decay and upregulated hippocampal expression of key synaptic proteins, including N-methyl-D-aspartate receptor subunits NR2B and NR1, vesicular glutamate transporter 1 (vGluT1), and the synaptic scaffolding protein postsynaptic density protein 95 (PSD95). Furthermore, aerobic exercise enhanced the expression of the anti-inflammatory mediator ANXA1 through exosome secretion while simultaneously suppressing the MAPK signaling pathway. These molecular changes were associated with increased astrocyte proliferation and the polarization of astrocytes toward the A2 phenotype. These findings were further validated using an in vitro co-culture model of astrocytes (U251) and neurons (HT22). In summary, our study demonstrates that aerobic exercise improves WM integrity and hippocampal function by modulating the ANXA1/MAPK axis following astrocyte polarization. Thus, aerobic exercise emerges as a promising intervention for promoting functional recovery in VCID.
期刊介绍:
Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.