Kuladip Barman, Md Mustahidul Islam, Km Supriya Das, Neha Singh, Sakshi Priya, Balak Das Kurmi, Preeti Patel
{"title":"医药领域手性分子对映体识别和对映体分离技术研究进展。","authors":"Kuladip Barman, Md Mustahidul Islam, Km Supriya Das, Neha Singh, Sakshi Priya, Balak Das Kurmi, Preeti Patel","doi":"10.1002/bmc.6073","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation. Recent advancements in these techniques have significantly improved enantioseparation efficiency and resolution. Chiral stationary phases (CSPs) have evolved, offering better selectivity, including hybrid organic–inorganic materials and miniaturization. The use of green solvents has also reduced environmental impact. Non-chromatographic methods, such as circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, enable enantiorecognition through interactions with polarized light or chiral solvents. However, these methods face challenges, including high costs, limited solvent compatibility, and shorter operational lifespans compared with chromatographic techniques. Recent developments in solvent-tolerant hybrid CSPs aim to address these limitations. This review highlights these innovations, focusing on their relevance to the pharmaceutical industry, pollution control, and quality assurance, and emphasizes the growing importance of these techniques in the production and regulation of chiral drugs.</p>\n </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Enantiorecognition and Enantioseparation Techniques of Chiral Molecules in the Pharmaceutical Field\",\"authors\":\"Kuladip Barman, Md Mustahidul Islam, Km Supriya Das, Neha Singh, Sakshi Priya, Balak Das Kurmi, Preeti Patel\",\"doi\":\"10.1002/bmc.6073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation. Recent advancements in these techniques have significantly improved enantioseparation efficiency and resolution. Chiral stationary phases (CSPs) have evolved, offering better selectivity, including hybrid organic–inorganic materials and miniaturization. The use of green solvents has also reduced environmental impact. Non-chromatographic methods, such as circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, enable enantiorecognition through interactions with polarized light or chiral solvents. However, these methods face challenges, including high costs, limited solvent compatibility, and shorter operational lifespans compared with chromatographic techniques. Recent developments in solvent-tolerant hybrid CSPs aim to address these limitations. This review highlights these innovations, focusing on their relevance to the pharmaceutical industry, pollution control, and quality assurance, and emphasizes the growing importance of these techniques in the production and regulation of chiral drugs.</p>\\n </div>\",\"PeriodicalId\":8861,\"journal\":{\"name\":\"Biomedical Chromatography\",\"volume\":\"39 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Chromatography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmc.6073\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.6073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Recent Advances in Enantiorecognition and Enantioseparation Techniques of Chiral Molecules in the Pharmaceutical Field
Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation. Recent advancements in these techniques have significantly improved enantioseparation efficiency and resolution. Chiral stationary phases (CSPs) have evolved, offering better selectivity, including hybrid organic–inorganic materials and miniaturization. The use of green solvents has also reduced environmental impact. Non-chromatographic methods, such as circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, enable enantiorecognition through interactions with polarized light or chiral solvents. However, these methods face challenges, including high costs, limited solvent compatibility, and shorter operational lifespans compared with chromatographic techniques. Recent developments in solvent-tolerant hybrid CSPs aim to address these limitations. This review highlights these innovations, focusing on their relevance to the pharmaceutical industry, pollution control, and quality assurance, and emphasizes the growing importance of these techniques in the production and regulation of chiral drugs.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.