{"title":"集成组学在人工髋关节置换术后假体无菌松动中的应用。","authors":"Yun-Ke Liu, Yong-Hui Dong, Xia-Ming Liang, Shuo Qiang, Meng-En Li, Zhuang Sun, Xin Zhao, Zhi-Hua Yan, Jia Zheng","doi":"10.3892/mmr.2025.13430","DOIUrl":null,"url":null,"abstract":"<p><p>Aseptic loosening (AL) of artificial hip joints is the most common complication following hip replacement surgery. A total of eight patients diagnosed with AL following total hip arthroplasty (THA) undergoing total hip replacement and eight control patients diagnosed with avascular necrosis of femoral head (ANFH) or femoral neck fracture undergoing THA were enrolled. The samples of the AL group were from synovial tissue surrounding the lining/head/neck of the prosthesis, and the samples of the control group were from the synovium in the joint cavity. The present study utilized second‑generation high‑throughput sequencing and mass spectrometry to detect differentially expressed genes, proteins and metabolites in the samples, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Key genes cytokine receptor‑like factor‑1 (CRLF1) and glutathione‑S transferase <i>µ</i>1 (GSTM1) expression levels were verified by reverse transcription‑quantitative PCR and western blotting. The integrated transcriptomics, proteomics and untargeted metabolomics analyses revealed characteristic metabolite changes (biosynthesis of guanine, L‑glycine and adenosine) and decreased CRLF1 and GSTM1 in AL, which were primarily associated with amino acid metabolism and lipid metabolism. In summary, the present study may uncover the underlying mechanisms of AL pathology and provide stable and accurate biomarkers for early warning and diagnosis.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726296/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of integrated omics in aseptic loosening of prostheses after hip replacement.\",\"authors\":\"Yun-Ke Liu, Yong-Hui Dong, Xia-Ming Liang, Shuo Qiang, Meng-En Li, Zhuang Sun, Xin Zhao, Zhi-Hua Yan, Jia Zheng\",\"doi\":\"10.3892/mmr.2025.13430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aseptic loosening (AL) of artificial hip joints is the most common complication following hip replacement surgery. A total of eight patients diagnosed with AL following total hip arthroplasty (THA) undergoing total hip replacement and eight control patients diagnosed with avascular necrosis of femoral head (ANFH) or femoral neck fracture undergoing THA were enrolled. The samples of the AL group were from synovial tissue surrounding the lining/head/neck of the prosthesis, and the samples of the control group were from the synovium in the joint cavity. The present study utilized second‑generation high‑throughput sequencing and mass spectrometry to detect differentially expressed genes, proteins and metabolites in the samples, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Key genes cytokine receptor‑like factor‑1 (CRLF1) and glutathione‑S transferase <i>µ</i>1 (GSTM1) expression levels were verified by reverse transcription‑quantitative PCR and western blotting. The integrated transcriptomics, proteomics and untargeted metabolomics analyses revealed characteristic metabolite changes (biosynthesis of guanine, L‑glycine and adenosine) and decreased CRLF1 and GSTM1 in AL, which were primarily associated with amino acid metabolism and lipid metabolism. In summary, the present study may uncover the underlying mechanisms of AL pathology and provide stable and accurate biomarkers for early warning and diagnosis.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13430\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13430","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Application of integrated omics in aseptic loosening of prostheses after hip replacement.
Aseptic loosening (AL) of artificial hip joints is the most common complication following hip replacement surgery. A total of eight patients diagnosed with AL following total hip arthroplasty (THA) undergoing total hip replacement and eight control patients diagnosed with avascular necrosis of femoral head (ANFH) or femoral neck fracture undergoing THA were enrolled. The samples of the AL group were from synovial tissue surrounding the lining/head/neck of the prosthesis, and the samples of the control group were from the synovium in the joint cavity. The present study utilized second‑generation high‑throughput sequencing and mass spectrometry to detect differentially expressed genes, proteins and metabolites in the samples, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Key genes cytokine receptor‑like factor‑1 (CRLF1) and glutathione‑S transferase µ1 (GSTM1) expression levels were verified by reverse transcription‑quantitative PCR and western blotting. The integrated transcriptomics, proteomics and untargeted metabolomics analyses revealed characteristic metabolite changes (biosynthesis of guanine, L‑glycine and adenosine) and decreased CRLF1 and GSTM1 in AL, which were primarily associated with amino acid metabolism and lipid metabolism. In summary, the present study may uncover the underlying mechanisms of AL pathology and provide stable and accurate biomarkers for early warning and diagnosis.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.