Jiang-Ke Yang, Meng-Yao Ding, Yu-Ting Hu, Xi-Zhi Hong, Zheng-Gang Han, Lei Lei
{"title":"黄杆菌YJ01菌株的全基因组分析表明,丰富的酶可以协同降解多种天然碳水化合物。","authors":"Jiang-Ke Yang, Meng-Yao Ding, Yu-Ting Hu, Xi-Zhi Hong, Zheng-Gang Han, Lei Lei","doi":"10.1093/jambio/lxae309","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Flavobacterium strains are widely distributed in various environments and generally exhibit specialized roles in the degradation of complex organic substrates. To obtain a deeper understanding of their enzyme profiles, patterns of action on natural carbohydrates degradation, and to mine gene resources for biomass conversion.</p><p><strong>Methods and results: </strong>We sequenced the whole genome of a novel carbohydrate-degrading Flavobacterium sp. strain YJ01. The genome size of strain YJ01 was 5.48 Mb and encoded 4674 predicted genes. Comparative genomic analysis revealed Flavobacterium strains were characterized by the presence of abundant genes associated with catalytic activity and metabolic processes, especially carbohydrate metabolism. About 9% of genes of strain YJ01 encoded carbohydrate-active enzymes. These enzymes can act on various complex natural and cellular carbohydrates. The synergistic effect of the enzymes on the hydrolysis of complex natural polysaccharides was further experimentally evidenced by using starch and xylan as substrates, in which the degradation rate of an enzyme combination was ~10-fold higher than that of the single enzyme.</p><p><strong>Conclusions: </strong>Flavobacterium sp. strain YJ01 has a high degree of catalytic and metabolic activity toward carbohydrates, and it harbors abundant, complete, and efficient enzymes for mediating complex polysaccharide degradation. These enzymes, acting synergistically on complex substrates, greatly improved the efficiency of digestion, which may be associated with the extensive ecological adaptability of Flavobacterium, which genetically heterologous divergent from extremely environments origin Flavobacterium strains.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide analysis of Flavobacterium strain YJ01 demonstrates abundant enzymes synergistically degrade diverse nature carbohydrates.\",\"authors\":\"Jiang-Ke Yang, Meng-Yao Ding, Yu-Ting Hu, Xi-Zhi Hong, Zheng-Gang Han, Lei Lei\",\"doi\":\"10.1093/jambio/lxae309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Flavobacterium strains are widely distributed in various environments and generally exhibit specialized roles in the degradation of complex organic substrates. To obtain a deeper understanding of their enzyme profiles, patterns of action on natural carbohydrates degradation, and to mine gene resources for biomass conversion.</p><p><strong>Methods and results: </strong>We sequenced the whole genome of a novel carbohydrate-degrading Flavobacterium sp. strain YJ01. The genome size of strain YJ01 was 5.48 Mb and encoded 4674 predicted genes. Comparative genomic analysis revealed Flavobacterium strains were characterized by the presence of abundant genes associated with catalytic activity and metabolic processes, especially carbohydrate metabolism. About 9% of genes of strain YJ01 encoded carbohydrate-active enzymes. These enzymes can act on various complex natural and cellular carbohydrates. The synergistic effect of the enzymes on the hydrolysis of complex natural polysaccharides was further experimentally evidenced by using starch and xylan as substrates, in which the degradation rate of an enzyme combination was ~10-fold higher than that of the single enzyme.</p><p><strong>Conclusions: </strong>Flavobacterium sp. strain YJ01 has a high degree of catalytic and metabolic activity toward carbohydrates, and it harbors abundant, complete, and efficient enzymes for mediating complex polysaccharide degradation. These enzymes, acting synergistically on complex substrates, greatly improved the efficiency of digestion, which may be associated with the extensive ecological adaptability of Flavobacterium, which genetically heterologous divergent from extremely environments origin Flavobacterium strains.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae309\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae309","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genome-wide analysis of Flavobacterium strain YJ01 demonstrates abundant enzymes synergistically degrade diverse nature carbohydrates.
Aims: Flavobacterium strains are widely distributed in various environments and generally exhibit specialized roles in the degradation of complex organic substrates. To obtain a deeper understanding of their enzyme profiles, patterns of action on natural carbohydrates degradation, and to mine gene resources for biomass conversion.
Methods and results: We sequenced the whole genome of a novel carbohydrate-degrading Flavobacterium sp. strain YJ01. The genome size of strain YJ01 was 5.48 Mb and encoded 4674 predicted genes. Comparative genomic analysis revealed Flavobacterium strains were characterized by the presence of abundant genes associated with catalytic activity and metabolic processes, especially carbohydrate metabolism. About 9% of genes of strain YJ01 encoded carbohydrate-active enzymes. These enzymes can act on various complex natural and cellular carbohydrates. The synergistic effect of the enzymes on the hydrolysis of complex natural polysaccharides was further experimentally evidenced by using starch and xylan as substrates, in which the degradation rate of an enzyme combination was ~10-fold higher than that of the single enzyme.
Conclusions: Flavobacterium sp. strain YJ01 has a high degree of catalytic and metabolic activity toward carbohydrates, and it harbors abundant, complete, and efficient enzymes for mediating complex polysaccharide degradation. These enzymes, acting synergistically on complex substrates, greatly improved the efficiency of digestion, which may be associated with the extensive ecological adaptability of Flavobacterium, which genetically heterologous divergent from extremely environments origin Flavobacterium strains.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.