基于图卷积网络和半监督学习的雷达信号分类

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-18 DOI:10.1109/LSP.2024.3519884
Ziying Li;Xiongjun Fu;Jian Dong;Min Xie
{"title":"基于图卷积网络和半监督学习的雷达信号分类","authors":"Ziying Li;Xiongjun Fu;Jian Dong;Min Xie","doi":"10.1109/LSP.2024.3519884","DOIUrl":null,"url":null,"abstract":"As a key technology in radar reconnaissance systems, radar signal sorting aims to separate multiple radar pulses from an interleaved pulse stream. Supervised signal sorting methods based on deep learning depend on a large volume of training data to optimize model parameters. However, acquiring labeled pulses in practice is challenging. In this letter, a semi-supervised learning (SSL) framework is proposed to address this issue. First, a Self-Organizing Map (SOM) is used to learn the spatial distribution of impulse features, and an anchor graph is constructed based on SOM nodes. A pseudo-label set is then generated using the SOM based on pulse discrepancy information. Finally, a three-layer Weighted Residual Graph Convolutional Network (WRGCN) is designed for signal sorting, with its parameters pre-trained on pseudo-labels and fine-tuned with a limited number of true labels. Experiments on a simulated radar pulse dataset demonstrate that this framework outperforms several existing methods for radar signal sorting with limited labeled pulses.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"421-425"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar Signal Sorting via Graph Convolutional Network and Semi-Supervised Learning\",\"authors\":\"Ziying Li;Xiongjun Fu;Jian Dong;Min Xie\",\"doi\":\"10.1109/LSP.2024.3519884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key technology in radar reconnaissance systems, radar signal sorting aims to separate multiple radar pulses from an interleaved pulse stream. Supervised signal sorting methods based on deep learning depend on a large volume of training data to optimize model parameters. However, acquiring labeled pulses in practice is challenging. In this letter, a semi-supervised learning (SSL) framework is proposed to address this issue. First, a Self-Organizing Map (SOM) is used to learn the spatial distribution of impulse features, and an anchor graph is constructed based on SOM nodes. A pseudo-label set is then generated using the SOM based on pulse discrepancy information. Finally, a three-layer Weighted Residual Graph Convolutional Network (WRGCN) is designed for signal sorting, with its parameters pre-trained on pseudo-labels and fine-tuned with a limited number of true labels. Experiments on a simulated radar pulse dataset demonstrate that this framework outperforms several existing methods for radar signal sorting with limited labeled pulses.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"421-425\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806592/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806592/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

雷达信号分选是雷达侦察系统中的一项关键技术,其目的是从交织的脉冲流中分离出多个雷达脉冲。基于深度学习的监督信号排序方法依赖于大量的训练数据来优化模型参数。然而,在实践中获取标记脉冲是具有挑战性的。在这封信中,提出了一个半监督学习(SSL)框架来解决这个问题。首先,使用自组织映射(SOM)学习脉冲特征的空间分布,并基于SOM节点构建锚点图;然后,基于脉冲差异信息,使用SOM生成伪标签集。最后,设计了一种三层加权残差图卷积网络(WRGCN)用于信号排序,其参数在伪标签上进行预训练,并使用有限数量的真标签进行微调。在模拟雷达脉冲数据集上的实验表明,该框架优于现有的几种具有有限标记脉冲的雷达信号分选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radar Signal Sorting via Graph Convolutional Network and Semi-Supervised Learning
As a key technology in radar reconnaissance systems, radar signal sorting aims to separate multiple radar pulses from an interleaved pulse stream. Supervised signal sorting methods based on deep learning depend on a large volume of training data to optimize model parameters. However, acquiring labeled pulses in practice is challenging. In this letter, a semi-supervised learning (SSL) framework is proposed to address this issue. First, a Self-Organizing Map (SOM) is used to learn the spatial distribution of impulse features, and an anchor graph is constructed based on SOM nodes. A pseudo-label set is then generated using the SOM based on pulse discrepancy information. Finally, a three-layer Weighted Residual Graph Convolutional Network (WRGCN) is designed for signal sorting, with its parameters pre-trained on pseudo-labels and fine-tuned with a limited number of true labels. Experiments on a simulated radar pulse dataset demonstrate that this framework outperforms several existing methods for radar signal sorting with limited labeled pulses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diffusion Generalized Minimum Total Error Entropy Algorithm FDDM: Frequency-Decomposed Diffusion Model for Dose Prediction in Radiotherapy Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Conjugate Gradient and Variance Reduction Based Online ADMM for Low-Rank Distributed Networks Blind Light Field Image Quality Assessment via Frequency Domain Analysis and Auxiliary Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1