预测足球运动员的价值:基于国际足联和现实世界统计数据集的机器学习技术和敏感性分析

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-04 DOI:10.1007/s10489-024-06189-0
Qijie Shen
{"title":"预测足球运动员的价值:基于国际足联和现实世界统计数据集的机器学习技术和敏感性分析","authors":"Qijie Shen","doi":"10.1007/s10489-024-06189-0","DOIUrl":null,"url":null,"abstract":"<div><p>The study focuses on applying machine learning methodologies to football player data for predicting player market values in the dynamic football market. Player datasets are rich, encompassing performance metrics, physiological attributes, and contextual variables. Machine learning models, including both traditional and advanced methods, effectively extract insights from complex data to estimate player market values. Addressing challenges like overfitting and computational complexity involves applying regularization, feature engineering, and interpretability tools to manage high-dimensional data and improve predictive accuracy. In this study sensitivity of selected models (Support Vector Regression (SVR), Random Forest Regression (RFR), Extreme Gradient Boosting (XGB), and Categorical Boosting (CAT)) models to extracted data from FIFA 19 and Real-world Statistical Datasets evaluated by Shapley Additive Explanations (SHAP) and the 20 most relevant features selected in the ranking of SHAP for each regression model. Then, models optimized with two meta-heuristic algorithms demonstrated their performance in predicting the market values of players. Dempster-Shafer Theory (DST) was utilized to develop an ensemble of models to overcome overfitting problems, and Fourier amplitude sensitivity testing (FAST) gave insight for future data extractions. The analysis of market values for players revealed significant model performance variations. XGSC hybrid model demonstrated exceptional precision with a minimal error of 1.7 million dollars (10% of average measured value), followed by RSCX_SC with misestimations of 2 million dollars (13.3% of average measured value). Extracted results suggested that models, especially ensemble form, offer reliable accuracy for club managers and stakeholders, aiding in strategic player selection based on previous performance. This approach proves particularly beneficial for optimizing player salaries, especially when considering a prominent team with market values above average.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the value of football players: machine learning techniques and sensitivity analysis based on FIFA and real-world statistical datasets\",\"authors\":\"Qijie Shen\",\"doi\":\"10.1007/s10489-024-06189-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study focuses on applying machine learning methodologies to football player data for predicting player market values in the dynamic football market. Player datasets are rich, encompassing performance metrics, physiological attributes, and contextual variables. Machine learning models, including both traditional and advanced methods, effectively extract insights from complex data to estimate player market values. Addressing challenges like overfitting and computational complexity involves applying regularization, feature engineering, and interpretability tools to manage high-dimensional data and improve predictive accuracy. In this study sensitivity of selected models (Support Vector Regression (SVR), Random Forest Regression (RFR), Extreme Gradient Boosting (XGB), and Categorical Boosting (CAT)) models to extracted data from FIFA 19 and Real-world Statistical Datasets evaluated by Shapley Additive Explanations (SHAP) and the 20 most relevant features selected in the ranking of SHAP for each regression model. Then, models optimized with two meta-heuristic algorithms demonstrated their performance in predicting the market values of players. Dempster-Shafer Theory (DST) was utilized to develop an ensemble of models to overcome overfitting problems, and Fourier amplitude sensitivity testing (FAST) gave insight for future data extractions. The analysis of market values for players revealed significant model performance variations. XGSC hybrid model demonstrated exceptional precision with a minimal error of 1.7 million dollars (10% of average measured value), followed by RSCX_SC with misestimations of 2 million dollars (13.3% of average measured value). Extracted results suggested that models, especially ensemble form, offer reliable accuracy for club managers and stakeholders, aiding in strategic player selection based on previous performance. This approach proves particularly beneficial for optimizing player salaries, especially when considering a prominent team with market values above average.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06189-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06189-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

该研究的重点是将机器学习方法应用于足球运动员数据,以预测动态足球市场中的球员市场价值。玩家数据集非常丰富,包括表现指标、生理属性和情境变量。机器学习模型,包括传统和先进的方法,有效地从复杂的数据中提取见解,以估计球员市场价值。解决像过拟合和计算复杂性这样的挑战涉及到应用正则化、特征工程和可解释性工具来管理高维数据并提高预测准确性。在本研究中,所选模型(支持向量回归(SVR),随机森林回归(RFR),极端梯度增强(XGB)和分类增强(CAT))模型对FIFA 19和真实世界统计数据集提取数据的敏感性通过Shapley加性解释(SHAP)进行评估,并在每个回归模型的SHAP排名中选择20个最相关的特征。然后,用两种元启发式算法优化了模型,验证了模型在预测参与者市场价值方面的性能。Dempster-Shafer理论(DST)用于开发模型集合以克服过拟合问题,傅里叶振幅灵敏度测试(FAST)为未来的数据提取提供了见解。对球员市场价值的分析揭示了显著的模型性能差异。XGSC混合模型显示出卓越的精度,最小误差为170万美元(平均测量值的10%),其次是RSCX_SC,错误估计为200万美元(平均测量值的13.3%)。提取的结果表明,模型,特别是集合形式,为俱乐部经理和利益相关者提供了可靠的准确性,有助于根据以往表现进行战略性球员选择。事实证明,这种方法对优化球员工资特别有益,尤其是在考虑一支市场价值高于平均水平的优秀球队时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the value of football players: machine learning techniques and sensitivity analysis based on FIFA and real-world statistical datasets

The study focuses on applying machine learning methodologies to football player data for predicting player market values in the dynamic football market. Player datasets are rich, encompassing performance metrics, physiological attributes, and contextual variables. Machine learning models, including both traditional and advanced methods, effectively extract insights from complex data to estimate player market values. Addressing challenges like overfitting and computational complexity involves applying regularization, feature engineering, and interpretability tools to manage high-dimensional data and improve predictive accuracy. In this study sensitivity of selected models (Support Vector Regression (SVR), Random Forest Regression (RFR), Extreme Gradient Boosting (XGB), and Categorical Boosting (CAT)) models to extracted data from FIFA 19 and Real-world Statistical Datasets evaluated by Shapley Additive Explanations (SHAP) and the 20 most relevant features selected in the ranking of SHAP for each regression model. Then, models optimized with two meta-heuristic algorithms demonstrated their performance in predicting the market values of players. Dempster-Shafer Theory (DST) was utilized to develop an ensemble of models to overcome overfitting problems, and Fourier amplitude sensitivity testing (FAST) gave insight for future data extractions. The analysis of market values for players revealed significant model performance variations. XGSC hybrid model demonstrated exceptional precision with a minimal error of 1.7 million dollars (10% of average measured value), followed by RSCX_SC with misestimations of 2 million dollars (13.3% of average measured value). Extracted results suggested that models, especially ensemble form, offer reliable accuracy for club managers and stakeholders, aiding in strategic player selection based on previous performance. This approach proves particularly beneficial for optimizing player salaries, especially when considering a prominent team with market values above average.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Insulator defect detection from aerial images in adverse weather conditions A review of the emotion recognition model of robots Knowledge guided relation enhancement for human-object interaction detection A modified dueling DQN algorithm for robot path planning incorporating priority experience replay and artificial potential fields A non-parameter oversampling approach for imbalanced data classification based on hybrid natural neighbors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1