基于加权局部patch特征和全局描述符的分层闭环检测

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-04 DOI:10.1007/s10489-024-06135-0
Mingrong Ren, Xiurui Zhang, Bin Liu, Yuehui Zhu
{"title":"基于加权局部patch特征和全局描述符的分层闭环检测","authors":"Mingrong Ren,&nbsp;Xiurui Zhang,&nbsp;Bin Liu,&nbsp;Yuehui Zhu","doi":"10.1007/s10489-024-06135-0","DOIUrl":null,"url":null,"abstract":"<div><p>Maintaining high-precision localization and ensuring map consistency are crucial objectives for mobile robots. However, loop closure detection remains a challenging aspect of their operation because of viewpoint and appearance changes. To address this issue, this paper proposes WP-VLAD, a novel hierarchical loop closure detection method that tightly couples global features and weighted local patch-level features (WPs). WP-VLAD employs MobileNetV3 as the backbone network for feature extraction, and integrates a trainable vector of local aggregated descriptors (VLAD) for compact global and local feature representation. A hierarchical navigable small world method is used to retrieve loop candidate frames based on the global features, whereas a multiscale feature fusion weighted map prediction module assigns weights to the local patches during mutual nearest neighbour matching. The proposed weight allocation strategy emphasizes salient regions, reducing interference from dynamic objects. The experimental results on benchmark datasets demonstrate that WP-VLAD significantly improves matching performance while maintaining efficient computation, exhibiting strong generalizability and robustness across various complex environments.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical loop closure detection with weighted local patch features and global descriptors\",\"authors\":\"Mingrong Ren,&nbsp;Xiurui Zhang,&nbsp;Bin Liu,&nbsp;Yuehui Zhu\",\"doi\":\"10.1007/s10489-024-06135-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maintaining high-precision localization and ensuring map consistency are crucial objectives for mobile robots. However, loop closure detection remains a challenging aspect of their operation because of viewpoint and appearance changes. To address this issue, this paper proposes WP-VLAD, a novel hierarchical loop closure detection method that tightly couples global features and weighted local patch-level features (WPs). WP-VLAD employs MobileNetV3 as the backbone network for feature extraction, and integrates a trainable vector of local aggregated descriptors (VLAD) for compact global and local feature representation. A hierarchical navigable small world method is used to retrieve loop candidate frames based on the global features, whereas a multiscale feature fusion weighted map prediction module assigns weights to the local patches during mutual nearest neighbour matching. The proposed weight allocation strategy emphasizes salient regions, reducing interference from dynamic objects. The experimental results on benchmark datasets demonstrate that WP-VLAD significantly improves matching performance while maintaining efficient computation, exhibiting strong generalizability and robustness across various complex environments.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06135-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06135-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

保持高精度定位和保证地图一致性是移动机器人的关键目标。然而,由于视点和外观的变化,闭环检测仍然是其操作的一个具有挑战性的方面。为了解决这一问题,本文提出了一种新的层次环闭合检测方法WP-VLAD,该方法将全局特征和加权局部补丁级特征(WPs)紧密耦合。WP-VLAD采用MobileNetV3作为特征提取的骨干网络,并集成了一个可训练的局部聚合描述符向量(VLAD),用于紧凑的全局和局部特征表示。采用分层可导航小世界方法基于全局特征检索环路候选帧,采用多尺度特征融合加权地图预测模块在相互近邻匹配过程中为局部补丁分配权重。提出的权重分配策略强调显著区域,减少动态目标的干扰。在基准数据集上的实验结果表明,WP-VLAD在保持高效计算的同时显著提高了匹配性能,在各种复杂环境下表现出较强的通用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical loop closure detection with weighted local patch features and global descriptors

Maintaining high-precision localization and ensuring map consistency are crucial objectives for mobile robots. However, loop closure detection remains a challenging aspect of their operation because of viewpoint and appearance changes. To address this issue, this paper proposes WP-VLAD, a novel hierarchical loop closure detection method that tightly couples global features and weighted local patch-level features (WPs). WP-VLAD employs MobileNetV3 as the backbone network for feature extraction, and integrates a trainable vector of local aggregated descriptors (VLAD) for compact global and local feature representation. A hierarchical navigable small world method is used to retrieve loop candidate frames based on the global features, whereas a multiscale feature fusion weighted map prediction module assigns weights to the local patches during mutual nearest neighbour matching. The proposed weight allocation strategy emphasizes salient regions, reducing interference from dynamic objects. The experimental results on benchmark datasets demonstrate that WP-VLAD significantly improves matching performance while maintaining efficient computation, exhibiting strong generalizability and robustness across various complex environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Insulator defect detection from aerial images in adverse weather conditions A review of the emotion recognition model of robots Knowledge guided relation enhancement for human-object interaction detection A modified dueling DQN algorithm for robot path planning incorporating priority experience replay and artificial potential fields A non-parameter oversampling approach for imbalanced data classification based on hybrid natural neighbors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1