回归的复杂高斯过程及其与WLMMSE的关系

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-11 DOI:10.1109/LSP.2024.3515818
Rafael Boloix-Tortosa;Juan José Murillo-Fuentes
{"title":"回归的复杂高斯过程及其与WLMMSE的关系","authors":"Rafael Boloix-Tortosa;Juan José Murillo-Fuentes","doi":"10.1109/LSP.2024.3515818","DOIUrl":null,"url":null,"abstract":"The Gaussian process (GP) is a well-established Bayesian nonparametric tool for inference in nonlinear estimation problems. When GPs are used for regression, the goal is to estimate a target signal \n<inline-formula><tex-math>${y}$</tex-math></inline-formula>\n from an input vector \n<inline-formula><tex-math>$\\mathbf {x}$</tex-math></inline-formula>\n without assuming that they are linearly related, but with a probabilistic model \n<inline-formula><tex-math>$p({y}|\\mathbf {x})$</tex-math></inline-formula>\n that is Gaussian distributed. Therefore, GPs can be understood as a natural nonlinear extension to MMSE estimation. For real-valued GPs, this has been analyzed in the existing literature, and it is concluded that they are the natural nonlinear Bayesian extension to the linear minimum mean-squared error (LMMSE) estimation. In this letter, we show that, consequently, complex-valued GP regression (GPR) models are the natural nonlinear Bayesian extension of the widely linear minimum mean squared-error (WLMMSE) estimation. As in the real-valued case, complex-valued GPs are able to better model many regression problems by making use of the information that the complementary kernel or pseudo-kernel provides.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"386-390"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10791914","citationCount":"0","resultStr":"{\"title\":\"Complex Gaussian Processes for Regression and Their Connection to WLMMSE\",\"authors\":\"Rafael Boloix-Tortosa;Juan José Murillo-Fuentes\",\"doi\":\"10.1109/LSP.2024.3515818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gaussian process (GP) is a well-established Bayesian nonparametric tool for inference in nonlinear estimation problems. When GPs are used for regression, the goal is to estimate a target signal \\n<inline-formula><tex-math>${y}$</tex-math></inline-formula>\\n from an input vector \\n<inline-formula><tex-math>$\\\\mathbf {x}$</tex-math></inline-formula>\\n without assuming that they are linearly related, but with a probabilistic model \\n<inline-formula><tex-math>$p({y}|\\\\mathbf {x})$</tex-math></inline-formula>\\n that is Gaussian distributed. Therefore, GPs can be understood as a natural nonlinear extension to MMSE estimation. For real-valued GPs, this has been analyzed in the existing literature, and it is concluded that they are the natural nonlinear Bayesian extension to the linear minimum mean-squared error (LMMSE) estimation. In this letter, we show that, consequently, complex-valued GP regression (GPR) models are the natural nonlinear Bayesian extension of the widely linear minimum mean squared-error (WLMMSE) estimation. As in the real-valued case, complex-valued GPs are able to better model many regression problems by making use of the information that the complementary kernel or pseudo-kernel provides.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"386-390\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10791914\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10791914/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10791914/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高斯过程(GP)是一种成熟的用于非线性估计问题推理的贝叶斯非参数工具。当GPs用于回归时,目标是从输入向量$\mathbf {x}$中估计目标信号${y}$,而不假设它们是线性相关的,而是使用高斯分布的概率模型$p({y}|\mathbf {x})$。因此,GPs可以理解为对MMSE估计的自然非线性扩展。对于实值GPs,已有文献对此进行了分析,得出它们是线性最小均方误差(LMMSE)估计的自然非线性贝叶斯推广。在这封信中,我们表明,因此,复值GP回归(GPR)模型是广义线性最小均方误差(WLMMSE)估计的自然非线性贝叶斯扩展。与实值情况一样,复值gp能够利用互补核或伪核提供的信息更好地对许多回归问题建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex Gaussian Processes for Regression and Their Connection to WLMMSE
The Gaussian process (GP) is a well-established Bayesian nonparametric tool for inference in nonlinear estimation problems. When GPs are used for regression, the goal is to estimate a target signal ${y}$ from an input vector $\mathbf {x}$ without assuming that they are linearly related, but with a probabilistic model $p({y}|\mathbf {x})$ that is Gaussian distributed. Therefore, GPs can be understood as a natural nonlinear extension to MMSE estimation. For real-valued GPs, this has been analyzed in the existing literature, and it is concluded that they are the natural nonlinear Bayesian extension to the linear minimum mean-squared error (LMMSE) estimation. In this letter, we show that, consequently, complex-valued GP regression (GPR) models are the natural nonlinear Bayesian extension of the widely linear minimum mean squared-error (WLMMSE) estimation. As in the real-valued case, complex-valued GPs are able to better model many regression problems by making use of the information that the complementary kernel or pseudo-kernel provides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diffusion Generalized Minimum Total Error Entropy Algorithm FDDM: Frequency-Decomposed Diffusion Model for Dose Prediction in Radiotherapy Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Conjugate Gradient and Variance Reduction Based Online ADMM for Low-Rank Distributed Networks Blind Light Field Image Quality Assessment via Frequency Domain Analysis and Auxiliary Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1