葡萄糖氧化酶在PDMS微流控芯片上的逐层自组装高效固定化研究

IF 2.6 4区 化学 Q3 POLYMER SCIENCE Journal of Polymer Research Pub Date : 2025-01-03 DOI:10.1007/s10965-024-04242-7
Kemeng Zhou, Yaoyao Yu, Zhihua Wang, Guolin Li, Yaohong Ma, Sirong Zhu, Weili Gong, Qingjun Meng, Binglian Wang, Qingai Liu
{"title":"葡萄糖氧化酶在PDMS微流控芯片上的逐层自组装高效固定化研究","authors":"Kemeng Zhou,&nbsp;Yaoyao Yu,&nbsp;Zhihua Wang,&nbsp;Guolin Li,&nbsp;Yaohong Ma,&nbsp;Sirong Zhu,&nbsp;Weili Gong,&nbsp;Qingjun Meng,&nbsp;Binglian Wang,&nbsp;Qingai Liu","doi":"10.1007/s10965-024-04242-7","DOIUrl":null,"url":null,"abstract":"<div><p>Enzyme immobilization in the microfluidic chip channel to improve enzyme activity and stability has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, a miniaturized glucose biosensor in which glucose oxidase (GOx) was efficiently immobilized in the PDMS chip microchannel by layer-by-layer self-assembly was developed and used successfully for amperometric determination of glucose. After the surface of PDMS microfluidic chip was treated with 365 nm ultraviolet light, the methacrylic acid monomer was grafted onto it using poly dimethyl diallyl ammonium chloride as linker, then GOx was electrostatically adsorbed on the inner wall of the PDMS chip microchannel to construct multilayer GOx. According to the results of confocal laser scanning microscopy, immobilized enzyme activity, and GOx loading, the maximum quantity of enzyme immobilized on 4 layers of GOx was observed within the PDMS microchannels. The amperometric response of glucose with the biosensor under the optimal conditions exhibited linear relationship in the range of 0.4 to 2.0 mM with correlation coefficient 0.9973, and the limit of detection was 84 μM. In addition, the microfluidic system greatly reduced the consumption of samples during tests and showed excellent accuracy, stability and reproducibility.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer-by-layer (LBL) self-assembly efficient immobilization of glucose oxidase onto PDMS microfluidic chip towards glucose biosensing\",\"authors\":\"Kemeng Zhou,&nbsp;Yaoyao Yu,&nbsp;Zhihua Wang,&nbsp;Guolin Li,&nbsp;Yaohong Ma,&nbsp;Sirong Zhu,&nbsp;Weili Gong,&nbsp;Qingjun Meng,&nbsp;Binglian Wang,&nbsp;Qingai Liu\",\"doi\":\"10.1007/s10965-024-04242-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enzyme immobilization in the microfluidic chip channel to improve enzyme activity and stability has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, a miniaturized glucose biosensor in which glucose oxidase (GOx) was efficiently immobilized in the PDMS chip microchannel by layer-by-layer self-assembly was developed and used successfully for amperometric determination of glucose. After the surface of PDMS microfluidic chip was treated with 365 nm ultraviolet light, the methacrylic acid monomer was grafted onto it using poly dimethyl diallyl ammonium chloride as linker, then GOx was electrostatically adsorbed on the inner wall of the PDMS chip microchannel to construct multilayer GOx. According to the results of confocal laser scanning microscopy, immobilized enzyme activity, and GOx loading, the maximum quantity of enzyme immobilized on 4 layers of GOx was observed within the PDMS microchannels. The amperometric response of glucose with the biosensor under the optimal conditions exhibited linear relationship in the range of 0.4 to 2.0 mM with correlation coefficient 0.9973, and the limit of detection was 84 μM. In addition, the microfluidic system greatly reduced the consumption of samples during tests and showed excellent accuracy, stability and reproducibility.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-024-04242-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04242-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在微流控芯片通道中固定化酶以提高酶的活性和稳定性已成为提高生物催化和生物质转化的有力策略。本研究开发了一种微型葡萄糖生物传感器,通过逐层自组装将葡萄糖氧化酶(GOx)有效地固定在PDMS芯片微通道中,并成功地用于葡萄糖的安培测定。采用365 nm紫外光对PDMS微流控芯片表面进行处理后,以聚二甲基二烯丙基氯化铵为接枝剂接枝甲基丙烯酸单体,将氧化石墨烯静电吸附在PDMS芯片微通道内壁上,构建多层氧化石墨烯。根据共聚焦激光扫描显微镜、固定化酶活性和GOx负载的结果,在PDMS微通道内观察到4层GOx的最大固定化酶量。在最佳条件下,生物传感器对葡萄糖的电流响应在0.4 ~ 2.0 mM范围内呈线性关系,相关系数为0.9973,检出限为84 μM。此外,微流控系统在测试过程中大大减少了样品的消耗,并表现出优异的准确性、稳定性和重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layer-by-layer (LBL) self-assembly efficient immobilization of glucose oxidase onto PDMS microfluidic chip towards glucose biosensing

Enzyme immobilization in the microfluidic chip channel to improve enzyme activity and stability has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, a miniaturized glucose biosensor in which glucose oxidase (GOx) was efficiently immobilized in the PDMS chip microchannel by layer-by-layer self-assembly was developed and used successfully for amperometric determination of glucose. After the surface of PDMS microfluidic chip was treated with 365 nm ultraviolet light, the methacrylic acid monomer was grafted onto it using poly dimethyl diallyl ammonium chloride as linker, then GOx was electrostatically adsorbed on the inner wall of the PDMS chip microchannel to construct multilayer GOx. According to the results of confocal laser scanning microscopy, immobilized enzyme activity, and GOx loading, the maximum quantity of enzyme immobilized on 4 layers of GOx was observed within the PDMS microchannels. The amperometric response of glucose with the biosensor under the optimal conditions exhibited linear relationship in the range of 0.4 to 2.0 mM with correlation coefficient 0.9973, and the limit of detection was 84 μM. In addition, the microfluidic system greatly reduced the consumption of samples during tests and showed excellent accuracy, stability and reproducibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
期刊最新文献
Fabrication of porous and conductive polystyrene/polyaniline fibers via electrospinning method: Adsorption and selectivity of oil Examination of the surface microstructure of α-alumina filled HDPE nanocomposites using positron annihilation methods Methyl acrylate functionalized hyper-crosslinked polymers and their efficient adsorptive removal of aromatic small molecule compounds from water Morphological and acoustical characterization of UV-irradiated foam composites from cooking oil and wood flake A comprehensive analysis of vinyl-based matrix resins used in semi-conductive shielding materials for power cables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1