基于分子模拟数据的白蛋白与血管紧张素- i转换酶的相互作用

D. A. Belinskaia, N. V. Goncharov
{"title":"基于分子模拟数据的白蛋白与血管紧张素- i转换酶的相互作用","authors":"D. A. Belinskaia,&nbsp;N. V. Goncharov","doi":"10.1134/S1990747824700302","DOIUrl":null,"url":null,"abstract":"<p>Human serum albumin (HSA) is an endogenous inhibitor of angiotensin-I-converting enzyme (ACE), which is an integral membrane protein catalyzing the cleavage of decapeptide angiotensin I to octapeptide angiotensin II. By inhibiting ACE, HSA plays an important role in the renin-angiotensin-aldosterone system (RAAS). However, little is known about the mechanism of interaction between these proteins, and the structure of the HSA–ACE complex has not yet been experimentally obtained. The aim of the presented work is to investigate the interaction of HSA with ACE by molecular modeling methods. Ten possible HSA–ACE complexes were obtained by macromolecular docking method. The leader complex was selected according to the number of steric and polar contacts between the proteins, and its stability was tested by molecular dynamics (MD) simulation. The possible effect of modifications in the albumin molecule on its interaction with ACE was analyzed. A comparative analysis of the structure of the obtained HSA–ACE complex with the known crystal structure of the HSA complex with neonatal Fc receptor (FcRn) was performed. The obtained results of molecular modeling define a direction for further in vitro studies of the mechanisms of HSA–ACE interaction. Information about these mechanisms will help in the design and improvement of pharmacotherapy aimed at modulating the physiological activity of ACE.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 4","pages":"303 - 312"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of Albumin with Angiotensin-I-Converting Enzyme According to Molecular Modeling Data\",\"authors\":\"D. A. Belinskaia,&nbsp;N. V. Goncharov\",\"doi\":\"10.1134/S1990747824700302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human serum albumin (HSA) is an endogenous inhibitor of angiotensin-I-converting enzyme (ACE), which is an integral membrane protein catalyzing the cleavage of decapeptide angiotensin I to octapeptide angiotensin II. By inhibiting ACE, HSA plays an important role in the renin-angiotensin-aldosterone system (RAAS). However, little is known about the mechanism of interaction between these proteins, and the structure of the HSA–ACE complex has not yet been experimentally obtained. The aim of the presented work is to investigate the interaction of HSA with ACE by molecular modeling methods. Ten possible HSA–ACE complexes were obtained by macromolecular docking method. The leader complex was selected according to the number of steric and polar contacts between the proteins, and its stability was tested by molecular dynamics (MD) simulation. The possible effect of modifications in the albumin molecule on its interaction with ACE was analyzed. A comparative analysis of the structure of the obtained HSA–ACE complex with the known crystal structure of the HSA complex with neonatal Fc receptor (FcRn) was performed. The obtained results of molecular modeling define a direction for further in vitro studies of the mechanisms of HSA–ACE interaction. Information about these mechanisms will help in the design and improvement of pharmacotherapy aimed at modulating the physiological activity of ACE.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"18 4\",\"pages\":\"303 - 312\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747824700302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人血清白蛋白(HSA)是内源性血管紧张素I转换酶(ACE)抑制剂,ACE是一种催化十肽血管紧张素I裂解为八肽血管紧张素II的完整膜蛋白。HSA通过抑制ACE,在肾素-血管紧张素-醛固酮系统(RAAS)中发挥重要作用。然而,对这些蛋白之间相互作用的机制知之甚少,并且HSA-ACE复合物的结构尚未通过实验获得。本研究的目的是通过分子模拟方法研究HSA与ACE的相互作用。通过大分子对接法得到了10种可能的HSA-ACE配合物。根据蛋白质之间的空间和极性接触次数选择先导配合物,并通过分子动力学(MD)模拟测试其稳定性。分析了白蛋白分子修饰对其与ACE相互作用的可能影响。将获得的HSA - ace复合物的结构与已知的新生儿Fc受体(FcRn) HSA复合物的晶体结构进行了比较分析。分子模拟的结果为进一步开展HSA-ACE相互作用机制的体外研究指明了方向。有关这些机制的信息将有助于设计和改进旨在调节ACE生理活性的药物治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction of Albumin with Angiotensin-I-Converting Enzyme According to Molecular Modeling Data

Human serum albumin (HSA) is an endogenous inhibitor of angiotensin-I-converting enzyme (ACE), which is an integral membrane protein catalyzing the cleavage of decapeptide angiotensin I to octapeptide angiotensin II. By inhibiting ACE, HSA plays an important role in the renin-angiotensin-aldosterone system (RAAS). However, little is known about the mechanism of interaction between these proteins, and the structure of the HSA–ACE complex has not yet been experimentally obtained. The aim of the presented work is to investigate the interaction of HSA with ACE by molecular modeling methods. Ten possible HSA–ACE complexes were obtained by macromolecular docking method. The leader complex was selected according to the number of steric and polar contacts between the proteins, and its stability was tested by molecular dynamics (MD) simulation. The possible effect of modifications in the albumin molecule on its interaction with ACE was analyzed. A comparative analysis of the structure of the obtained HSA–ACE complex with the known crystal structure of the HSA complex with neonatal Fc receptor (FcRn) was performed. The obtained results of molecular modeling define a direction for further in vitro studies of the mechanisms of HSA–ACE interaction. Information about these mechanisms will help in the design and improvement of pharmacotherapy aimed at modulating the physiological activity of ACE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
期刊最新文献
Tardigrade Dsup Protein Protects Human Cells during Proton Radiotherapy Expression and Purification of Transmembrane Domain of Insulin Receptors for Structural-Dynamic NMR Studies Kinetic Characteristics of Erythrocyte Membrane Acetylcholinesterase in Ground Squirrels During Hibernation and Arousal Network Pharmacology and Molecular Docking Analysis of Luteolin from Ginkgo biloba for Drug Target Identification in Age-Related Cardiovascular Diseases Changes in Electrical Properties of Bilayer Lipid Membranes Induced by Colloidal Magnetite (Fe3O4) Nanoparticles in a Static Inhomogeneous Magnetic Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1